import asyncio import os import inspect import logging import logging.config from lightrag import LightRAG, QueryParam from lightrag.utils import EmbeddingFunc, logger, set_verbose_debug from lightrag.kg.shared_storage import initialize_pipeline_status import requests import numpy as np from dotenv import load_dotenv """This code is a modified version of lightrag_openai_demo.py""" # ideally, as always, env! load_dotenv(dotenv_path=".env", override=False) """ ----========= IMPORTANT CHANGE THIS! =========---- """ cloudflare_api_key = "YOUR_API_KEY" account_id = "YOUR_ACCOUNT ID" # This is unique to your Cloudflare account # Authomatically changes api_base_url = f"https://api.cloudflare.com/client/v4/accounts/{account_id}/ai/run/" # choose an embedding model EMBEDDING_MODEL = "@cf/baai/bge-m3" # choose a generative model LLM_MODEL = "@cf/meta/llama-3.2-3b-instruct" WORKING_DIR = "../dickens" # you can change output as desired # Cloudflare init class CloudflareWorker: def __init__( self, cloudflare_api_key: str, api_base_url: str, llm_model_name: str, embedding_model_name: str, max_tokens: int = 4080, max_response_tokens: int = 4080, ): self.cloudflare_api_key = cloudflare_api_key self.api_base_url = api_base_url self.llm_model_name = llm_model_name self.embedding_model_name = embedding_model_name self.max_tokens = max_tokens self.max_response_tokens = max_response_tokens async def _send_request(self, model_name: str, input_: dict, debug_log: str): headers = {"Authorization": f"Bearer {self.cloudflare_api_key}"} print(f""" data sent to Cloudflare ~~~~~~~~~~~ {debug_log} """) try: response_raw = requests.post( f"{self.api_base_url}{model_name}", headers=headers, json=input_ ).json() print(f""" Cloudflare worker responded with: ~~~~~~~~~~~ {str(response_raw)} """) result = response_raw.get("result", {}) if "data" in result: # Embedding case return np.array(result["data"]) if "response" in result: # LLM response return result["response"] raise ValueError("Unexpected Cloudflare response format") except Exception as e: print(f""" Cloudflare API returned: ~~~~~~~~~ Error: {e} """) input("Press Enter to continue...") return None async def query(self, prompt, system_prompt: str = "", **kwargs) -> str: # since no caching is used and we don't want to mess with everything lightrag, pop the kwarg it is kwargs.pop("hashing_kv", None) message = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": prompt}, ] input_ = { "messages": message, "max_tokens": self.max_tokens, "response_token_limit": self.max_response_tokens, } return await self._send_request( self.llm_model_name, input_, debug_log=f"\n- model used {self.llm_model_name}\n- system prompt: {system_prompt}\n- query: {prompt}", ) async def embedding_chunk(self, texts: list[str]) -> np.ndarray: print(f""" TEXT inputted ~~~~~ {texts} """) input_ = { "text": texts, "max_tokens": self.max_tokens, "response_token_limit": self.max_response_tokens, } return await self._send_request( self.embedding_model_name, input_, debug_log=f"\n-llm model name {self.embedding_model_name}\n- texts: {texts}", ) def configure_logging(): """Configure logging for the application""" # Reset any existing handlers to ensure clean configuration for logger_name in ["uvicorn", "uvicorn.access", "uvicorn.error", "lightrag"]: logger_instance = logging.getLogger(logger_name) logger_instance.handlers = [] logger_instance.filters = [] # Get log directory path from environment variable or use current directory log_dir = os.getenv("LOG_DIR", os.getcwd()) log_file_path = os.path.abspath( os.path.join(log_dir, "lightrag_cloudflare_worker_demo.log") ) print(f"\nLightRAG compatible demo log file: {log_file_path}\n") os.makedirs(os.path.dirname(log_file_path), exist_ok=True) # Get log file max size and backup count from environment variables log_max_bytes = int(os.getenv("LOG_MAX_BYTES", 10485760)) # Default 10MB log_backup_count = int(os.getenv("LOG_BACKUP_COUNT", 5)) # Default 5 backups logging.config.dictConfig( { "version": 1, "disable_existing_loggers": False, "formatters": { "default": { "format": "%(levelname)s: %(message)s", }, "detailed": { "format": "%(asctime)s - %(name)s - %(levelname)s - %(message)s", }, }, "handlers": { "console": { "formatter": "default", "class": "logging.StreamHandler", "stream": "ext://sys.stderr", }, "file": { "formatter": "detailed", "class": "logging.handlers.RotatingFileHandler", "filename": log_file_path, "maxBytes": log_max_bytes, "backupCount": log_backup_count, "encoding": "utf-8", }, }, "loggers": { "lightrag": { "handlers": ["console", "file"], "level": "INFO", "propagate": False, }, }, } ) # Set the logger level to INFO logger.setLevel(logging.INFO) # Enable verbose debug if needed set_verbose_debug(os.getenv("VERBOSE_DEBUG", "false").lower() == "true") if not os.path.exists(WORKING_DIR): os.mkdir(WORKING_DIR) async def initialize_rag(): cloudflare_worker = CloudflareWorker( cloudflare_api_key=cloudflare_api_key, api_base_url=api_base_url, embedding_model_name=EMBEDDING_MODEL, llm_model_name=LLM_MODEL, ) rag = LightRAG( working_dir=WORKING_DIR, max_parallel_insert=2, llm_model_func=cloudflare_worker.query, llm_model_name=os.getenv("LLM_MODEL", LLM_MODEL), llm_model_max_token_size=4080, embedding_func=EmbeddingFunc( embedding_dim=int(os.getenv("EMBEDDING_DIM", "1024")), max_token_size=int(os.getenv("MAX_EMBED_TOKENS", "2048")), func=lambda texts: cloudflare_worker.embedding_chunk( texts, ), ), ) await rag.initialize_storages() await initialize_pipeline_status() return rag async def print_stream(stream): async for chunk in stream: print(chunk, end="", flush=True) async def main(): try: # Clear old data files files_to_delete = [ "graph_chunk_entity_relation.graphml", "kv_store_doc_status.json", "kv_store_full_docs.json", "kv_store_text_chunks.json", "vdb_chunks.json", "vdb_entities.json", "vdb_relationships.json", ] for file in files_to_delete: file_path = os.path.join(WORKING_DIR, file) if os.path.exists(file_path): os.remove(file_path) print(f"Deleting old file:: {file_path}") # Initialize RAG instance rag = await initialize_rag() # Test embedding function test_text = ["This is a test string for embedding."] embedding = await rag.embedding_func(test_text) embedding_dim = embedding.shape[1] print("\n=======================") print("Test embedding function") print("========================") print(f"Test dict: {test_text}") print(f"Detected embedding dimension: {embedding_dim}\n\n") # Locate the location of what is needed to be added to the knowledge # Can add several simultaneously by modifying code with open("./book.txt", "r", encoding="utf-8") as f: await rag.ainsert(f.read()) # Perform naive search print("\n=====================") print("Query mode: naive") print("=====================") resp = await rag.aquery( "What are the top themes in this story?", param=QueryParam(mode="naive", stream=True), ) if inspect.isasyncgen(resp): await print_stream(resp) else: print(resp) # Perform local search print("\n=====================") print("Query mode: local") print("=====================") resp = await rag.aquery( "What are the top themes in this story?", param=QueryParam(mode="local", stream=True), ) if inspect.isasyncgen(resp): await print_stream(resp) else: print(resp) # Perform global search print("\n=====================") print("Query mode: global") print("=====================") resp = await rag.aquery( "What are the top themes in this story?", param=QueryParam(mode="global", stream=True), ) if inspect.isasyncgen(resp): await print_stream(resp) else: print(resp) # Perform hybrid search print("\n=====================") print("Query mode: hybrid") print("=====================") resp = await rag.aquery( "What are the top themes in this story?", param=QueryParam(mode="hybrid", stream=True), ) if inspect.isasyncgen(resp): await print_stream(resp) else: print(resp) """ FOR TESTING (if you want to test straight away, after building. Uncomment this part""" """ print("\n" + "=" * 60) print("AI ASSISTANT READY!") print("Ask questions about (your uploaded) regulations") print("Type 'quit' to exit") print("=" * 60) while True: question = input("\n🔥 Your question: ") if question.lower() in ['quit', 'exit', 'bye']: break print("\nThinking...") response = await rag.aquery(question, param=QueryParam(mode="hybrid")) print(f"\nAnswer: {response}") """ except Exception as e: print(f"An error occurred: {e}") finally: if rag: await rag.llm_response_cache.index_done_callback() await rag.finalize_storages() if __name__ == "__main__": # Configure logging before running the main function configure_logging() asyncio.run(main()) print("\nDone!")