""" OpenAI LLM Interface Module ========================== This module provides interfaces for interacting with openai's language models, including text generation and embedding capabilities. Author: Lightrag team Created: 2024-01-24 License: MIT License Copyright (c) 2024 Lightrag Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: Version: 1.0.0 Change Log: - 1.0.0 (2024-01-24): Initial release * Added async chat completion support * Added embedding generation * Added stream response capability Dependencies: - openai - numpy - pipmaster - Python >= 3.10 Usage: from llm_interfaces.nvidia_openai import nvidia_openai_model_complete, nvidia_openai_embed """ __version__ = "1.0.0" __author__ = "lightrag Team" __status__ = "Production" import sys import os if sys.version_info < (3, 9): pass else: pass import pipmaster as pm # Pipmaster for dynamic library install # install specific modules if not pm.is_installed("openai"): pm.install("openai") from openai import ( AsyncOpenAI, APIConnectionError, RateLimitError, APITimeoutError, ) from tenacity import ( retry, stop_after_attempt, wait_exponential, retry_if_exception_type, ) from lightrag.utils import ( wrap_embedding_func_with_attrs, ) import numpy as np @wrap_embedding_func_with_attrs(embedding_dim=2048, max_token_size=512) @retry( stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=60), retry=retry_if_exception_type( (RateLimitError, APIConnectionError, APITimeoutError) ), ) async def nvidia_openai_embed( texts: list[str], model: str = "nvidia/llama-3.2-nv-embedqa-1b-v1", # refer to https://build.nvidia.com/nim?filters=usecase%3Ausecase_text_to_embedding base_url: str = "https://integrate.api.nvidia.com/v1", api_key: str = None, input_type: str = "passage", # query for retrieval, passage for embedding trunc: str = "NONE", # NONE or START or END encode: str = "float", # float or base64 ) -> np.ndarray: if api_key: os.environ["OPENAI_API_KEY"] = api_key openai_async_client = ( AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url) ) response = await openai_async_client.embeddings.create( model=model, input=texts, encoding_format=encode, extra_body={"input_type": input_type, "truncate": trunc}, ) return np.array([dp.embedding for dp in response.data])