from __future__ import annotations import weakref import asyncio import html import csv import json import logging import logging.handlers import os import re import uuid from dataclasses import dataclass from datetime import datetime from functools import wraps from hashlib import md5 from typing import Any, Protocol, Callable, TYPE_CHECKING, List import numpy as np from dotenv import load_dotenv from lightrag.constants import ( DEFAULT_LOG_MAX_BYTES, DEFAULT_LOG_BACKUP_COUNT, DEFAULT_LOG_FILENAME, GRAPH_FIELD_SEP, DEFAULT_MAX_TOTAL_TOKENS, DEFAULT_MAX_FILE_PATH_LENGTH, ) # Global import for pypinyin with startup-time logging try: import pypinyin _PYPINYIN_AVAILABLE = True logger = logging.getLogger("lightrag") logger.info("pypinyin loaded successfully for Chinese pinyin sorting") except ImportError: pypinyin = None _PYPINYIN_AVAILABLE = False logger = logging.getLogger("lightrag") logger.warning( "pypinyin is not installed. Chinese pinyin sorting will use simple string sorting." ) def get_env_value( env_key: str, default: any, value_type: type = str, special_none: bool = False ) -> any: """ Get value from environment variable with type conversion Args: env_key (str): Environment variable key default (any): Default value if env variable is not set value_type (type): Type to convert the value to special_none (bool): If True, return None when value is "None" Returns: any: Converted value from environment or default """ value = os.getenv(env_key) if value is None: return default # Handle special case for "None" string if special_none and value == "None": return None if value_type is bool: return value.lower() in ("true", "1", "yes", "t", "on") try: return value_type(value) except (ValueError, TypeError): return default # Use TYPE_CHECKING to avoid circular imports if TYPE_CHECKING: from lightrag.base import BaseKVStorage, BaseVectorStorage, QueryParam # use the .env that is inside the current folder # allows to use different .env file for each lightrag instance # the OS environment variables take precedence over the .env file load_dotenv(dotenv_path=".env", override=False) VERBOSE_DEBUG = os.getenv("VERBOSE", "false").lower() == "true" def verbose_debug(msg: str, *args, **kwargs): """Function for outputting detailed debug information. When VERBOSE_DEBUG=True, outputs the complete message. When VERBOSE_DEBUG=False, outputs only the first 50 characters. Args: msg: The message format string *args: Arguments to be formatted into the message **kwargs: Keyword arguments passed to logger.debug() """ if VERBOSE_DEBUG: logger.debug(msg, *args, **kwargs) else: # Format the message with args first if args: formatted_msg = msg % args else: formatted_msg = msg # Then truncate the formatted message truncated_msg = ( formatted_msg[:150] + "..." if len(formatted_msg) > 150 else formatted_msg ) # Remove consecutive newlines truncated_msg = re.sub(r"\n+", "\n", truncated_msg) logger.debug(truncated_msg, **kwargs) def set_verbose_debug(enabled: bool): """Enable or disable verbose debug output""" global VERBOSE_DEBUG VERBOSE_DEBUG = enabled statistic_data = {"llm_call": 0, "llm_cache": 0, "embed_call": 0} # Initialize logger logger = logging.getLogger("lightrag") logger.propagate = False # prevent log message send to root loggger # Let the main application configure the handlers logger.setLevel(logging.INFO) # Set httpx logging level to WARNING logging.getLogger("httpx").setLevel(logging.WARNING) class LightragPathFilter(logging.Filter): """Filter for lightrag logger to filter out frequent path access logs""" def __init__(self): super().__init__() # Define paths to be filtered self.filtered_paths = [ "/documents", "/documents/paginated", "/health", "/webui/", "/documents/pipeline_status", ] # self.filtered_paths = ["/health", "/webui/"] def filter(self, record): try: # Check if record has the required attributes for an access log if not hasattr(record, "args") or not isinstance(record.args, tuple): return True if len(record.args) < 5: return True # Extract method, path and status from the record args method = record.args[1] path = record.args[2] status = record.args[4] # Filter out successful GET requests to filtered paths if ( method == "GET" or method == "POST" and (status == 200 or status == 304) and path in self.filtered_paths ): return False return True except Exception: # In case of any error, let the message through return True def setup_logger( logger_name: str, level: str = "INFO", add_filter: bool = False, log_file_path: str | None = None, enable_file_logging: bool = True, ): """Set up a logger with console and optionally file handlers Args: logger_name: Name of the logger to set up level: Log level (DEBUG, INFO, WARNING, ERROR, CRITICAL) add_filter: Whether to add LightragPathFilter to the logger log_file_path: Path to the log file. If None and file logging is enabled, defaults to lightrag.log in LOG_DIR or cwd enable_file_logging: Whether to enable logging to a file (defaults to True) """ # Configure formatters detailed_formatter = logging.Formatter( "%(asctime)s - %(name)s - %(levelname)s - %(message)s" ) simple_formatter = logging.Formatter("%(levelname)s: %(message)s") logger_instance = logging.getLogger(logger_name) logger_instance.setLevel(level) logger_instance.handlers = [] # Clear existing handlers logger_instance.propagate = False # Add console handler console_handler = logging.StreamHandler() console_handler.setFormatter(simple_formatter) console_handler.setLevel(level) logger_instance.addHandler(console_handler) # Add file handler by default unless explicitly disabled if enable_file_logging: # Get log file path if log_file_path is None: log_dir = os.getenv("LOG_DIR", os.getcwd()) log_file_path = os.path.abspath(os.path.join(log_dir, DEFAULT_LOG_FILENAME)) # Ensure log directory exists os.makedirs(os.path.dirname(log_file_path), exist_ok=True) # Get log file max size and backup count from environment variables log_max_bytes = get_env_value("LOG_MAX_BYTES", DEFAULT_LOG_MAX_BYTES, int) log_backup_count = get_env_value( "LOG_BACKUP_COUNT", DEFAULT_LOG_BACKUP_COUNT, int ) try: # Add file handler file_handler = logging.handlers.RotatingFileHandler( filename=log_file_path, maxBytes=log_max_bytes, backupCount=log_backup_count, encoding="utf-8", ) file_handler.setFormatter(detailed_formatter) file_handler.setLevel(level) logger_instance.addHandler(file_handler) except PermissionError as e: logger.warning(f"Could not create log file at {log_file_path}: {str(e)}") logger.warning("Continuing with console logging only") # Add path filter if requested if add_filter: path_filter = LightragPathFilter() logger_instance.addFilter(path_filter) class UnlimitedSemaphore: """A context manager that allows unlimited access.""" async def __aenter__(self): pass async def __aexit__(self, exc_type, exc, tb): pass @dataclass class EmbeddingFunc: embedding_dim: int func: callable max_token_size: int | None = None # deprecated keep it for compatible only async def __call__(self, *args, **kwargs) -> np.ndarray: return await self.func(*args, **kwargs) def compute_args_hash(*args: Any) -> str: """Compute a hash for the given arguments. Args: *args: Arguments to hash Returns: str: Hash string """ import hashlib # Convert all arguments to strings and join them args_str = "".join([str(arg) for arg in args]) # Compute MD5 hash return hashlib.md5(args_str.encode()).hexdigest() def generate_cache_key(mode: str, cache_type: str, hash_value: str) -> str: """Generate a flattened cache key in the format {mode}:{cache_type}:{hash} Args: mode: Cache mode (e.g., 'default', 'local', 'global') cache_type: Type of cache (e.g., 'extract', 'query', 'keywords') hash_value: Hash value from compute_args_hash Returns: str: Flattened cache key """ return f"{mode}:{cache_type}:{hash_value}" def parse_cache_key(cache_key: str) -> tuple[str, str, str] | None: """Parse a flattened cache key back into its components Args: cache_key: Flattened cache key in format {mode}:{cache_type}:{hash} Returns: tuple[str, str, str] | None: (mode, cache_type, hash) or None if invalid format """ parts = cache_key.split(":", 2) if len(parts) == 3: return parts[0], parts[1], parts[2] return None def compute_mdhash_id(content: str, prefix: str = "") -> str: """ Compute a unique ID for a given content string. The ID is a combination of the given prefix and the MD5 hash of the content string. """ return prefix + md5(content.encode()).hexdigest() # Custom exception class class QueueFullError(Exception): """Raised when the queue is full and the wait times out""" pass def priority_limit_async_func_call(max_size: int, max_queue_size: int = 1000): """ Enhanced priority-limited asynchronous function call decorator Args: max_size: Maximum number of concurrent calls max_queue_size: Maximum queue capacity to prevent memory overflow Returns: Decorator function """ def final_decro(func): # Ensure func is callable if not callable(func): raise TypeError(f"Expected a callable object, got {type(func)}") queue = asyncio.PriorityQueue(maxsize=max_queue_size) tasks = set() initialization_lock = asyncio.Lock() counter = 0 shutdown_event = asyncio.Event() initialized = False # Global initialization flag worker_health_check_task = None # Track active future objects for cleanup active_futures = weakref.WeakSet() reinit_count = 0 # Reinitialization counter to track system health # Worker function to process tasks in the queue async def worker(): """Worker that processes tasks in the priority queue""" try: while not shutdown_event.is_set(): try: # Use timeout to get tasks, allowing periodic checking of shutdown signal try: ( priority, count, future, args, kwargs, ) = await asyncio.wait_for(queue.get(), timeout=1.0) except asyncio.TimeoutError: # Timeout is just to check shutdown signal, continue to next iteration continue # If future is cancelled, skip execution if future.cancelled(): queue.task_done() continue try: # Execute function result = await func(*args, **kwargs) # If future is not done, set the result if not future.done(): future.set_result(result) except asyncio.CancelledError: if not future.done(): future.cancel() logger.debug("limit_async: Task cancelled during execution") except Exception as e: logger.error( f"limit_async: Error in decorated function: {str(e)}" ) if not future.done(): future.set_exception(e) finally: queue.task_done() except Exception as e: # Catch all exceptions in worker loop to prevent worker termination logger.error(f"limit_async: Critical error in worker: {str(e)}") await asyncio.sleep(0.1) # Prevent high CPU usage finally: logger.debug("limit_async: Worker exiting") async def health_check(): """Periodically check worker health status and recover""" nonlocal initialized try: while not shutdown_event.is_set(): await asyncio.sleep(5) # Check every 5 seconds # No longer acquire lock, directly operate on task set # Use a copy of the task set to avoid concurrent modification current_tasks = set(tasks) done_tasks = {t for t in current_tasks if t.done()} tasks.difference_update(done_tasks) # Calculate active tasks count active_tasks_count = len(tasks) workers_needed = max_size - active_tasks_count if workers_needed > 0: logger.info( f"limit_async: Creating {workers_needed} new workers" ) new_tasks = set() for _ in range(workers_needed): task = asyncio.create_task(worker()) new_tasks.add(task) task.add_done_callback(tasks.discard) # Update task set in one operation tasks.update(new_tasks) except Exception as e: logger.error(f"limit_async: Error in health check: {str(e)}") finally: logger.debug("limit_async: Health check task exiting") initialized = False async def ensure_workers(): """Ensure worker threads and health check system are available This function checks if the worker system is already initialized. If not, it performs a one-time initialization of all worker threads and starts the health check system. """ nonlocal initialized, worker_health_check_task, tasks, reinit_count if initialized: return async with initialization_lock: if initialized: return # Increment reinitialization counter if this is not the first initialization if reinit_count > 0: reinit_count += 1 logger.warning( f"limit_async: Reinitializing needed (count: {reinit_count})" ) else: reinit_count = 1 # First initialization # Check for completed tasks and remove them from the task set current_tasks = set(tasks) done_tasks = {t for t in current_tasks if t.done()} tasks.difference_update(done_tasks) # Log active tasks count during reinitialization active_tasks_count = len(tasks) if active_tasks_count > 0 and reinit_count > 1: logger.warning( f"limit_async: {active_tasks_count} tasks still running during reinitialization" ) # Create initial worker tasks, only adding the number needed workers_needed = max_size - active_tasks_count for _ in range(workers_needed): task = asyncio.create_task(worker()) tasks.add(task) task.add_done_callback(tasks.discard) # Start health check worker_health_check_task = asyncio.create_task(health_check()) initialized = True logger.info(f"limit_async: {workers_needed} new workers initialized") async def shutdown(): """Gracefully shut down all workers and the queue""" logger.info("limit_async: Shutting down priority queue workers") # Set the shutdown event shutdown_event.set() # Cancel all active futures for future in list(active_futures): if not future.done(): future.cancel() # Wait for the queue to empty try: await asyncio.wait_for(queue.join(), timeout=5.0) except asyncio.TimeoutError: logger.warning( "limit_async: Timeout waiting for queue to empty during shutdown" ) # Cancel all worker tasks for task in list(tasks): if not task.done(): task.cancel() # Wait for all tasks to complete if tasks: await asyncio.gather(*tasks, return_exceptions=True) # Cancel the health check task if worker_health_check_task and not worker_health_check_task.done(): worker_health_check_task.cancel() try: await worker_health_check_task except asyncio.CancelledError: pass logger.info("limit_async: Priority queue workers shutdown complete") @wraps(func) async def wait_func( *args, _priority=10, _timeout=None, _queue_timeout=None, **kwargs ): """ Execute the function with priority-based concurrency control Args: *args: Positional arguments passed to the function _priority: Call priority (lower values have higher priority) _timeout: Maximum time to wait for function completion (in seconds) _queue_timeout: Maximum time to wait for entering the queue (in seconds) **kwargs: Keyword arguments passed to the function Returns: The result of the function call Raises: TimeoutError: If the function call times out QueueFullError: If the queue is full and waiting times out Any exception raised by the decorated function """ # Ensure worker system is initialized await ensure_workers() # Create a future for the result future = asyncio.Future() active_futures.add(future) nonlocal counter async with initialization_lock: current_count = counter # Use local variable to avoid race conditions counter += 1 # Try to put the task into the queue, supporting timeout try: if _queue_timeout is not None: # Use timeout to wait for queue space try: await asyncio.wait_for( # current_count is used to ensure FIFO order queue.put((_priority, current_count, future, args, kwargs)), timeout=_queue_timeout, ) except asyncio.TimeoutError: raise QueueFullError( f"Queue full, timeout after {_queue_timeout} seconds" ) else: # No timeout, may wait indefinitely # current_count is used to ensure FIFO order await queue.put((_priority, current_count, future, args, kwargs)) except Exception as e: # Clean up the future if not future.done(): future.set_exception(e) active_futures.discard(future) raise try: # Wait for the result, optional timeout if _timeout is not None: try: return await asyncio.wait_for(future, _timeout) except asyncio.TimeoutError: # Cancel the future if not future.done(): future.cancel() raise TimeoutError( f"limit_async: Task timed out after {_timeout} seconds" ) else: # Wait for the result without timeout return await future finally: # Clean up the future reference active_futures.discard(future) # Add the shutdown method to the decorated function wait_func.shutdown = shutdown return wait_func return final_decro def wrap_embedding_func_with_attrs(**kwargs): """Wrap a function with attributes""" def final_decro(func) -> EmbeddingFunc: new_func = EmbeddingFunc(**kwargs, func=func) return new_func return final_decro def load_json(file_name): if not os.path.exists(file_name): return None with open(file_name, encoding="utf-8-sig") as f: return json.load(f) def write_json(json_obj, file_name): with open(file_name, "w", encoding="utf-8") as f: json.dump(json_obj, f, indent=2, ensure_ascii=False) class TokenizerInterface(Protocol): """ Defines the interface for a tokenizer, requiring encode and decode methods. """ def encode(self, content: str) -> List[int]: """Encodes a string into a list of tokens.""" ... def decode(self, tokens: List[int]) -> str: """Decodes a list of tokens into a string.""" ... class Tokenizer: """ A wrapper around a tokenizer to provide a consistent interface for encoding and decoding. """ def __init__(self, model_name: str, tokenizer: TokenizerInterface): """ Initializes the Tokenizer with a tokenizer model name and a tokenizer instance. Args: model_name: The associated model name for the tokenizer. tokenizer: An instance of a class implementing the TokenizerInterface. """ self.model_name: str = model_name self.tokenizer: TokenizerInterface = tokenizer def encode(self, content: str) -> List[int]: """ Encodes a string into a list of tokens using the underlying tokenizer. Args: content: The string to encode. Returns: A list of integer tokens. """ return self.tokenizer.encode(content) def decode(self, tokens: List[int]) -> str: """ Decodes a list of tokens into a string using the underlying tokenizer. Args: tokens: A list of integer tokens to decode. Returns: The decoded string. """ return self.tokenizer.decode(tokens) class TiktokenTokenizer(Tokenizer): """ A Tokenizer implementation using the tiktoken library. """ def __init__(self, model_name: str = "gpt-4o-mini"): """ Initializes the TiktokenTokenizer with a specified model name. Args: model_name: The model name for the tiktoken tokenizer to use. Defaults to "gpt-4o-mini". Raises: ImportError: If tiktoken is not installed. ValueError: If the model_name is invalid. """ try: import tiktoken except ImportError: raise ImportError( "tiktoken is not installed. Please install it with `pip install tiktoken` or define custom `tokenizer_func`." ) try: tokenizer = tiktoken.encoding_for_model(model_name) super().__init__(model_name=model_name, tokenizer=tokenizer) except KeyError: raise ValueError(f"Invalid model_name: {model_name}.") def pack_user_ass_to_openai_messages(*args: str): roles = ["user", "assistant"] return [ {"role": roles[i % 2], "content": content} for i, content in enumerate(args) ] def split_string_by_multi_markers(content: str, markers: list[str]) -> list[str]: """Split a string by multiple markers""" if not markers: return [content] content = content if content is not None else "" results = re.split("|".join(re.escape(marker) for marker in markers), content) return [r.strip() for r in results if r.strip()] # Refer the utils functions of the official GraphRAG implementation: # https://github.com/microsoft/graphrag def clean_str(input: Any) -> str: """Clean an input string by removing HTML escapes, control characters, and other unwanted characters.""" # If we get non-string input, just give it back if not isinstance(input, str): return input result = html.unescape(input.strip()) # https://stackoverflow.com/questions/4324790/removing-control-characters-from-a-string-in-python return re.sub(r"[\x00-\x1f\x7f-\x9f]", "", result) def is_float_regex(value: str) -> bool: return bool(re.match(r"^[-+]?[0-9]*\.?[0-9]+$", value)) def truncate_list_by_token_size( list_data: list[Any], key: Callable[[Any], str], max_token_size: int, tokenizer: Tokenizer, ) -> list[int]: """Truncate a list of data by token size""" if max_token_size <= 0: return [] tokens = 0 for i, data in enumerate(list_data): tokens += len(tokenizer.encode(key(data))) if tokens > max_token_size: return list_data[:i] return list_data def cosine_similarity(v1, v2): """Calculate cosine similarity between two vectors""" dot_product = np.dot(v1, v2) norm1 = np.linalg.norm(v1) norm2 = np.linalg.norm(v2) return dot_product / (norm1 * norm2) async def handle_cache( hashing_kv, args_hash, prompt, mode="default", cache_type=None, ) -> str | None: """Generic cache handling function with flattened cache keys""" if hashing_kv is None: return None if mode != "default": # handle cache for all type of query if not hashing_kv.global_config.get("enable_llm_cache"): return None else: # handle cache for entity extraction if not hashing_kv.global_config.get("enable_llm_cache_for_entity_extract"): return None # Use flattened cache key format: {mode}:{cache_type}:{hash} flattened_key = generate_cache_key(mode, cache_type, args_hash) cache_entry = await hashing_kv.get_by_id(flattened_key) if cache_entry: logger.debug(f"Flattened cache hit(key:{flattened_key})") return cache_entry["return"] logger.debug(f"Cache missed(mode:{mode} type:{cache_type})") return None @dataclass class CacheData: args_hash: str content: str prompt: str mode: str = "default" cache_type: str = "query" chunk_id: str | None = None queryparam: dict | None = None async def save_to_cache(hashing_kv, cache_data: CacheData): """Save data to cache using flattened key structure. Args: hashing_kv: The key-value storage for caching cache_data: The cache data to save """ # Skip if storage is None or content is a streaming response if hashing_kv is None or not cache_data.content: return # If content is a streaming response, don't cache it if hasattr(cache_data.content, "__aiter__"): logger.debug("Streaming response detected, skipping cache") return # Use flattened cache key format: {mode}:{cache_type}:{hash} flattened_key = generate_cache_key( cache_data.mode, cache_data.cache_type, cache_data.args_hash ) # Check if we already have identical content cached existing_cache = await hashing_kv.get_by_id(flattened_key) if existing_cache: existing_content = existing_cache.get("return") if existing_content == cache_data.content: logger.info(f"Cache content unchanged for {flattened_key}, skipping update") return # Create cache entry with flattened structure cache_entry = { "return": cache_data.content, "cache_type": cache_data.cache_type, "chunk_id": cache_data.chunk_id if cache_data.chunk_id is not None else None, "original_prompt": cache_data.prompt, "queryparam": cache_data.queryparam if cache_data.queryparam is not None else None, } logger.info(f" == LLM cache == saving: {flattened_key}") # Save using flattened key await hashing_kv.upsert({flattened_key: cache_entry}) def safe_unicode_decode(content): # Regular expression to find all Unicode escape sequences of the form \uXXXX unicode_escape_pattern = re.compile(r"\\u([0-9a-fA-F]{4})") # Function to replace the Unicode escape with the actual character def replace_unicode_escape(match): # Convert the matched hexadecimal value into the actual Unicode character return chr(int(match.group(1), 16)) # Perform the substitution decoded_content = unicode_escape_pattern.sub( replace_unicode_escape, content.decode("utf-8") ) return decoded_content def exists_func(obj, func_name: str) -> bool: """Check if a function exists in an object or not. :param obj: :param func_name: :return: True / False """ if callable(getattr(obj, func_name, None)): return True else: return False def get_conversation_turns( conversation_history: list[dict[str, Any]], num_turns: int ) -> str: """ Process conversation history to get the specified number of complete turns. Args: conversation_history: List of conversation messages in chronological order num_turns: Number of complete turns to include Returns: Formatted string of the conversation history """ # Check if num_turns is valid if num_turns <= 0: return "" # Group messages into turns turns: list[list[dict[str, Any]]] = [] messages: list[dict[str, Any]] = [] # First, filter out keyword extraction messages for msg in conversation_history: if msg["role"] == "assistant" and ( msg["content"].startswith('{ "high_level_keywords"') or msg["content"].startswith("{'high_level_keywords'") ): continue messages.append(msg) # Then process messages in chronological order i = 0 while i < len(messages) - 1: msg1 = messages[i] msg2 = messages[i + 1] # Check if we have a user-assistant or assistant-user pair if (msg1["role"] == "user" and msg2["role"] == "assistant") or ( msg1["role"] == "assistant" and msg2["role"] == "user" ): # Always put user message first in the turn if msg1["role"] == "assistant": turn = [msg2, msg1] # user, assistant else: turn = [msg1, msg2] # user, assistant turns.append(turn) i += 2 # Keep only the most recent num_turns if len(turns) > num_turns: turns = turns[-num_turns:] # Format the turns into a string formatted_turns: list[str] = [] for turn in turns: formatted_turns.extend( [f"user: {turn[0]['content']}", f"assistant: {turn[1]['content']}"] ) return "\n".join(formatted_turns) def always_get_an_event_loop() -> asyncio.AbstractEventLoop: """ Ensure that there is always an event loop available. This function tries to get the current event loop. If the current event loop is closed or does not exist, it creates a new event loop and sets it as the current event loop. Returns: asyncio.AbstractEventLoop: The current or newly created event loop. """ try: # Try to get the current event loop current_loop = asyncio.get_event_loop() if current_loop.is_closed(): raise RuntimeError("Event loop is closed.") return current_loop except RuntimeError: # If no event loop exists or it is closed, create a new one logger.info("Creating a new event loop in main thread.") new_loop = asyncio.new_event_loop() asyncio.set_event_loop(new_loop) return new_loop async def aexport_data( chunk_entity_relation_graph, entities_vdb, relationships_vdb, output_path: str, file_format: str = "csv", include_vector_data: bool = False, ) -> None: """ Asynchronously exports all entities, relations, and relationships to various formats. Args: chunk_entity_relation_graph: Graph storage instance for entities and relations entities_vdb: Vector database storage for entities relationships_vdb: Vector database storage for relationships output_path: The path to the output file (including extension). file_format: Output format - "csv", "excel", "md", "txt". - csv: Comma-separated values file - excel: Microsoft Excel file with multiple sheets - md: Markdown tables - txt: Plain text formatted output include_vector_data: Whether to include data from the vector database. """ # Collect data entities_data = [] relations_data = [] relationships_data = [] # --- Entities --- all_entities = await chunk_entity_relation_graph.get_all_labels() for entity_name in all_entities: # Get entity information from graph node_data = await chunk_entity_relation_graph.get_node(entity_name) source_id = node_data.get("source_id") if node_data else None entity_info = { "graph_data": node_data, "source_id": source_id, } # Optional: Get vector database information if include_vector_data: entity_id = compute_mdhash_id(entity_name, prefix="ent-") vector_data = await entities_vdb.get_by_id(entity_id) entity_info["vector_data"] = vector_data entity_row = { "entity_name": entity_name, "source_id": source_id, "graph_data": str( entity_info["graph_data"] ), # Convert to string to ensure compatibility } if include_vector_data and "vector_data" in entity_info: entity_row["vector_data"] = str(entity_info["vector_data"]) entities_data.append(entity_row) # --- Relations --- for src_entity in all_entities: for tgt_entity in all_entities: if src_entity == tgt_entity: continue edge_exists = await chunk_entity_relation_graph.has_edge( src_entity, tgt_entity ) if edge_exists: # Get edge information from graph edge_data = await chunk_entity_relation_graph.get_edge( src_entity, tgt_entity ) source_id = edge_data.get("source_id") if edge_data else None relation_info = { "graph_data": edge_data, "source_id": source_id, } # Optional: Get vector database information if include_vector_data: rel_id = compute_mdhash_id(src_entity + tgt_entity, prefix="rel-") vector_data = await relationships_vdb.get_by_id(rel_id) relation_info["vector_data"] = vector_data relation_row = { "src_entity": src_entity, "tgt_entity": tgt_entity, "source_id": relation_info["source_id"], "graph_data": str(relation_info["graph_data"]), # Convert to string } if include_vector_data and "vector_data" in relation_info: relation_row["vector_data"] = str(relation_info["vector_data"]) relations_data.append(relation_row) # --- Relationships (from VectorDB) --- all_relationships = await relationships_vdb.client_storage for rel in all_relationships["data"]: relationships_data.append( { "relationship_id": rel["__id__"], "data": str(rel), # Convert to string for compatibility } ) # Export based on format if file_format == "csv": # CSV export with open(output_path, "w", newline="", encoding="utf-8") as csvfile: # Entities if entities_data: csvfile.write("# ENTITIES\n") writer = csv.DictWriter(csvfile, fieldnames=entities_data[0].keys()) writer.writeheader() writer.writerows(entities_data) csvfile.write("\n\n") # Relations if relations_data: csvfile.write("# RELATIONS\n") writer = csv.DictWriter(csvfile, fieldnames=relations_data[0].keys()) writer.writeheader() writer.writerows(relations_data) csvfile.write("\n\n") # Relationships if relationships_data: csvfile.write("# RELATIONSHIPS\n") writer = csv.DictWriter( csvfile, fieldnames=relationships_data[0].keys() ) writer.writeheader() writer.writerows(relationships_data) elif file_format == "excel": # Excel export import pandas as pd entities_df = pd.DataFrame(entities_data) if entities_data else pd.DataFrame() relations_df = ( pd.DataFrame(relations_data) if relations_data else pd.DataFrame() ) relationships_df = ( pd.DataFrame(relationships_data) if relationships_data else pd.DataFrame() ) with pd.ExcelWriter(output_path, engine="xlsxwriter") as writer: if not entities_df.empty: entities_df.to_excel(writer, sheet_name="Entities", index=False) if not relations_df.empty: relations_df.to_excel(writer, sheet_name="Relations", index=False) if not relationships_df.empty: relationships_df.to_excel( writer, sheet_name="Relationships", index=False ) elif file_format == "md": # Markdown export with open(output_path, "w", encoding="utf-8") as mdfile: mdfile.write("# LightRAG Data Export\n\n") # Entities mdfile.write("## Entities\n\n") if entities_data: # Write header mdfile.write("| " + " | ".join(entities_data[0].keys()) + " |\n") mdfile.write( "| " + " | ".join(["---"] * len(entities_data[0].keys())) + " |\n" ) # Write rows for entity in entities_data: mdfile.write( "| " + " | ".join(str(v) for v in entity.values()) + " |\n" ) mdfile.write("\n\n") else: mdfile.write("*No entity data available*\n\n") # Relations mdfile.write("## Relations\n\n") if relations_data: # Write header mdfile.write("| " + " | ".join(relations_data[0].keys()) + " |\n") mdfile.write( "| " + " | ".join(["---"] * len(relations_data[0].keys())) + " |\n" ) # Write rows for relation in relations_data: mdfile.write( "| " + " | ".join(str(v) for v in relation.values()) + " |\n" ) mdfile.write("\n\n") else: mdfile.write("*No relation data available*\n\n") # Relationships mdfile.write("## Relationships\n\n") if relationships_data: # Write header mdfile.write("| " + " | ".join(relationships_data[0].keys()) + " |\n") mdfile.write( "| " + " | ".join(["---"] * len(relationships_data[0].keys())) + " |\n" ) # Write rows for relationship in relationships_data: mdfile.write( "| " + " | ".join(str(v) for v in relationship.values()) + " |\n" ) else: mdfile.write("*No relationship data available*\n\n") elif file_format == "txt": # Plain text export with open(output_path, "w", encoding="utf-8") as txtfile: txtfile.write("LIGHTRAG DATA EXPORT\n") txtfile.write("=" * 80 + "\n\n") # Entities txtfile.write("ENTITIES\n") txtfile.write("-" * 80 + "\n") if entities_data: # Create fixed width columns col_widths = { k: max(len(k), max(len(str(e[k])) for e in entities_data)) for k in entities_data[0] } header = " ".join(k.ljust(col_widths[k]) for k in entities_data[0]) txtfile.write(header + "\n") txtfile.write("-" * len(header) + "\n") # Write rows for entity in entities_data: row = " ".join( str(v).ljust(col_widths[k]) for k, v in entity.items() ) txtfile.write(row + "\n") txtfile.write("\n\n") else: txtfile.write("No entity data available\n\n") # Relations txtfile.write("RELATIONS\n") txtfile.write("-" * 80 + "\n") if relations_data: # Create fixed width columns col_widths = { k: max(len(k), max(len(str(r[k])) for r in relations_data)) for k in relations_data[0] } header = " ".join(k.ljust(col_widths[k]) for k in relations_data[0]) txtfile.write(header + "\n") txtfile.write("-" * len(header) + "\n") # Write rows for relation in relations_data: row = " ".join( str(v).ljust(col_widths[k]) for k, v in relation.items() ) txtfile.write(row + "\n") txtfile.write("\n\n") else: txtfile.write("No relation data available\n\n") # Relationships txtfile.write("RELATIONSHIPS\n") txtfile.write("-" * 80 + "\n") if relationships_data: # Create fixed width columns col_widths = { k: max(len(k), max(len(str(r[k])) for r in relationships_data)) for k in relationships_data[0] } header = " ".join( k.ljust(col_widths[k]) for k in relationships_data[0] ) txtfile.write(header + "\n") txtfile.write("-" * len(header) + "\n") # Write rows for relationship in relationships_data: row = " ".join( str(v).ljust(col_widths[k]) for k, v in relationship.items() ) txtfile.write(row + "\n") else: txtfile.write("No relationship data available\n\n") else: raise ValueError( f"Unsupported file format: {file_format}. " f"Choose from: csv, excel, md, txt" ) if file_format is not None: print(f"Data exported to: {output_path} with format: {file_format}") else: print("Data displayed as table format") def export_data( chunk_entity_relation_graph, entities_vdb, relationships_vdb, output_path: str, file_format: str = "csv", include_vector_data: bool = False, ) -> None: """ Synchronously exports all entities, relations, and relationships to various formats. Args: chunk_entity_relation_graph: Graph storage instance for entities and relations entities_vdb: Vector database storage for entities relationships_vdb: Vector database storage for relationships output_path: The path to the output file (including extension). file_format: Output format - "csv", "excel", "md", "txt". - csv: Comma-separated values file - excel: Microsoft Excel file with multiple sheets - md: Markdown tables - txt: Plain text formatted output include_vector_data: Whether to include data from the vector database. """ try: loop = asyncio.get_event_loop() except RuntimeError: loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) loop.run_until_complete( aexport_data( chunk_entity_relation_graph, entities_vdb, relationships_vdb, output_path, file_format, include_vector_data, ) ) def lazy_external_import(module_name: str, class_name: str) -> Callable[..., Any]: """Lazily import a class from an external module based on the package of the caller.""" # Get the caller's module and package import inspect caller_frame = inspect.currentframe().f_back module = inspect.getmodule(caller_frame) package = module.__package__ if module else None def import_class(*args: Any, **kwargs: Any): import importlib module = importlib.import_module(module_name, package=package) cls = getattr(module, class_name) return cls(*args, **kwargs) return import_class async def update_chunk_cache_list( chunk_id: str, text_chunks_storage: "BaseKVStorage", cache_keys: list[str], cache_scenario: str = "batch_update", ) -> None: """Update chunk's llm_cache_list with the given cache keys Args: chunk_id: Chunk identifier text_chunks_storage: Text chunks storage instance cache_keys: List of cache keys to add to the list cache_scenario: Description of the cache scenario for logging """ if not cache_keys: return try: chunk_data = await text_chunks_storage.get_by_id(chunk_id) if chunk_data: # Ensure llm_cache_list exists if "llm_cache_list" not in chunk_data: chunk_data["llm_cache_list"] = [] # Add cache keys to the list if not already present existing_keys = set(chunk_data["llm_cache_list"]) new_keys = [key for key in cache_keys if key not in existing_keys] if new_keys: chunk_data["llm_cache_list"].extend(new_keys) # Update the chunk in storage await text_chunks_storage.upsert({chunk_id: chunk_data}) logger.debug( f"Updated chunk {chunk_id} with {len(new_keys)} cache keys ({cache_scenario})" ) except Exception as e: logger.warning( f"Failed to update chunk {chunk_id} with cache references on {cache_scenario}: {e}" ) def remove_think_tags(text: str) -> str: """Remove tags from the text""" return re.sub(r"^(.*?|)", "", text, flags=re.DOTALL).strip() async def use_llm_func_with_cache( input_text: str, use_llm_func: callable, llm_response_cache: "BaseKVStorage | None" = None, max_tokens: int = None, history_messages: list[dict[str, str]] = None, cache_type: str = "extract", chunk_id: str | None = None, cache_keys_collector: list = None, ) -> str: """Call LLM function with cache support If cache is available and enabled (determined by handle_cache based on mode), retrieve result from cache; otherwise call LLM function and save result to cache. Args: input_text: Input text to send to LLM use_llm_func: LLM function with higher priority llm_response_cache: Cache storage instance max_tokens: Maximum tokens for generation history_messages: History messages list cache_type: Type of cache chunk_id: Chunk identifier to store in cache text_chunks_storage: Text chunks storage to update llm_cache_list cache_keys_collector: Optional list to collect cache keys for batch processing Returns: LLM response text """ if llm_response_cache: if history_messages: history = json.dumps(history_messages, ensure_ascii=False) _prompt = history + "\n" + input_text else: _prompt = input_text arg_hash = compute_args_hash(_prompt) # Generate cache key for this LLM call cache_key = generate_cache_key("default", cache_type, arg_hash) cached_return = await handle_cache( llm_response_cache, arg_hash, _prompt, "default", cache_type=cache_type, ) if cached_return: logger.debug(f"Found cache for {arg_hash}") statistic_data["llm_cache"] += 1 # Add cache key to collector if provided if cache_keys_collector is not None: cache_keys_collector.append(cache_key) return cached_return statistic_data["llm_call"] += 1 # Call LLM kwargs = {} if history_messages: kwargs["history_messages"] = history_messages if max_tokens is not None: kwargs["max_tokens"] = max_tokens res: str = await use_llm_func(input_text, **kwargs) res = remove_think_tags(res) if llm_response_cache.global_config.get("enable_llm_cache_for_entity_extract"): await save_to_cache( llm_response_cache, CacheData( args_hash=arg_hash, content=res, prompt=_prompt, cache_type=cache_type, chunk_id=chunk_id, ), ) # Add cache key to collector if provided if cache_keys_collector is not None: cache_keys_collector.append(cache_key) return res # When cache is disabled, directly call LLM kwargs = {} if history_messages: kwargs["history_messages"] = history_messages if max_tokens is not None: kwargs["max_tokens"] = max_tokens logger.info(f"Call LLM function with query text length: {len(input_text)}") res = await use_llm_func(input_text, **kwargs) return remove_think_tags(res) def get_content_summary(content: str, max_length: int = 250) -> str: """Get summary of document content Args: content: Original document content max_length: Maximum length of summary Returns: Truncated content with ellipsis if needed """ content = content.strip() if len(content) <= max_length: return content return content[:max_length] + "..." def normalize_extracted_info(name: str, is_entity=False) -> str: """Normalize entity/relation names and description with the following rules: 1. Remove spaces between Chinese characters 2. Remove spaces between Chinese characters and English letters/numbers 3. Preserve spaces within English text and numbers 4. Replace Chinese parentheses with English parentheses 5. Replace Chinese dash with English dash 6. Remove English quotation marks from the beginning and end of the text 7. Remove English quotation marks in and around chinese 8. Remove Chinese quotation marks Args: name: Entity name to normalize Returns: Normalized entity name """ # Replace Chinese parentheses with English parentheses name = name.replace("(", "(").replace(")", ")") # Replace Chinese dash with English dash name = name.replace("—", "-").replace("-", "-") # Use regex to remove spaces between Chinese characters # Regex explanation: # (?<=[\u4e00-\u9fa5]): Positive lookbehind for Chinese character # \s+: One or more whitespace characters # (?=[\u4e00-\u9fa5]): Positive lookahead for Chinese character name = re.sub(r"(?<=[\u4e00-\u9fa5])\s+(?=[\u4e00-\u9fa5])", "", name) # Remove spaces between Chinese and English/numbers/symbols name = re.sub( r"(?<=[\u4e00-\u9fa5])\s+(?=[a-zA-Z0-9\(\)\[\]@#$%!&\*\-=+_])", "", name ) name = re.sub( r"(?<=[a-zA-Z0-9\(\)\[\]@#$%!&\*\-=+_])\s+(?=[\u4e00-\u9fa5])", "", name ) # Remove English quotation marks from the beginning and end if len(name) >= 2 and name.startswith('"') and name.endswith('"'): name = name[1:-1] if len(name) >= 2 and name.startswith("'") and name.endswith("'"): name = name[1:-1] if is_entity: # remove Chinese quotes name = name.replace("“", "").replace("”", "").replace("‘", "").replace("’", "") # remove English queotes in and around chinese name = re.sub(r"['\"]+(?=[\u4e00-\u9fa5])", "", name) name = re.sub(r"(?<=[\u4e00-\u9fa5])['\"]+", "", name) return name def clean_text(text: str) -> str: """Clean text by removing null bytes (0x00) and whitespace Args: text: Input text to clean Returns: Cleaned text """ return text.strip().replace("\x00", "") def check_storage_env_vars(storage_name: str) -> None: """Check if all required environment variables for storage implementation exist Args: storage_name: Storage implementation name Raises: ValueError: If required environment variables are missing """ from lightrag.kg import STORAGE_ENV_REQUIREMENTS required_vars = STORAGE_ENV_REQUIREMENTS.get(storage_name, []) missing_vars = [var for var in required_vars if var not in os.environ] if missing_vars: raise ValueError( f"Storage implementation '{storage_name}' requires the following " f"environment variables: {', '.join(missing_vars)}" ) def pick_by_weighted_polling( entities_or_relations: list[dict], max_related_chunks: int, min_related_chunks: int = 1, ) -> list[str]: """ Linear gradient weighted polling algorithm for text chunk selection. This algorithm ensures that entities/relations with higher importance get more text chunks, forming a linear decreasing allocation pattern. Args: entities_or_relations: List of entities or relations sorted by importance (high to low) max_related_chunks: Expected number of text chunks for the highest importance entity/relation min_related_chunks: Expected number of text chunks for the lowest importance entity/relation Returns: List of selected text chunk IDs """ if not entities_or_relations: return [] n = len(entities_or_relations) if n == 1: # Only one entity/relation, return its first max_related_chunks text chunks entity_chunks = entities_or_relations[0].get("sorted_chunks", []) return entity_chunks[:max_related_chunks] # Calculate expected text chunk count for each position (linear decrease) expected_counts = [] for i in range(n): # Linear interpolation: from max_related_chunks to min_related_chunks ratio = i / (n - 1) if n > 1 else 0 expected = max_related_chunks - ratio * ( max_related_chunks - min_related_chunks ) expected_counts.append(int(round(expected))) # First round allocation: allocate by expected values selected_chunks = [] used_counts = [] # Track number of chunks used by each entity total_remaining = 0 # Accumulate remaining quotas for i, entity_rel in enumerate(entities_or_relations): entity_chunks = entity_rel.get("sorted_chunks", []) expected = expected_counts[i] # Actual allocatable count actual = min(expected, len(entity_chunks)) selected_chunks.extend(entity_chunks[:actual]) used_counts.append(actual) # Accumulate remaining quota remaining = expected - actual if remaining > 0: total_remaining += remaining # Second round allocation: multi-round scanning to allocate remaining quotas for _ in range(total_remaining): allocated = False # Scan entities one by one, allocate one chunk when finding unused chunks for i, entity_rel in enumerate(entities_or_relations): entity_chunks = entity_rel.get("sorted_chunks", []) # Check if there are still unused chunks if used_counts[i] < len(entity_chunks): # Allocate one chunk selected_chunks.append(entity_chunks[used_counts[i]]) used_counts[i] += 1 allocated = True break # If no chunks were allocated in this round, all entities are exhausted if not allocated: break return selected_chunks async def pick_by_vector_similarity( query: str, text_chunks_storage: "BaseKVStorage", chunks_vdb: "BaseVectorStorage", num_of_chunks: int, entity_info: list[dict[str, Any]], embedding_func: callable, ) -> list[str]: """ Vector similarity-based text chunk selection algorithm. This algorithm selects text chunks based on cosine similarity between the query embedding and text chunk embeddings. Args: query: User's original query string text_chunks_storage: Text chunks storage instance chunks_vdb: Vector database storage for chunks num_of_chunks: Number of chunks to select entity_info: List of entity information containing chunk IDs embedding_func: Embedding function to compute query embedding Returns: List of selected text chunk IDs sorted by similarity (highest first) """ logger.debug( f"Vector similarity chunk selection: num_of_chunks={num_of_chunks}, entity_info_count={len(entity_info) if entity_info else 0}" ) if not entity_info or num_of_chunks <= 0: return [] # Collect all unique chunk IDs from entity info all_chunk_ids = set() for i, entity in enumerate(entity_info): chunk_ids = entity.get("sorted_chunks", []) all_chunk_ids.update(chunk_ids) if not all_chunk_ids: logger.warning( "Vector similarity chunk selection: no chunk IDs found in entity_info" ) return [] logger.debug( f"Vector similarity chunk selection: {len(all_chunk_ids)} unique chunk IDs collected" ) all_chunk_ids = list(all_chunk_ids) try: # Get query embedding query_embedding = await embedding_func([query]) query_embedding = query_embedding[ 0 ] # Extract first embedding from batch result # Get chunk embeddings from vector database chunk_vectors = await chunks_vdb.get_vectors_by_ids(all_chunk_ids) logger.debug( f"Vector similarity chunk selection: {len(chunk_vectors)} chunk vectors Retrieved" ) if not chunk_vectors or len(chunk_vectors) != len(all_chunk_ids): if not chunk_vectors: logger.warning( "Vector similarity chunk selection: no vectors retrieved from chunks_vdb" ) else: logger.warning( f"Vector similarity chunk selection: found {len(chunk_vectors)} but expecting {len(all_chunk_ids)}" ) return [] # Calculate cosine similarities similarities = [] valid_vectors = 0 for chunk_id in all_chunk_ids: if chunk_id in chunk_vectors: chunk_embedding = chunk_vectors[chunk_id] try: # Calculate cosine similarity similarity = cosine_similarity(query_embedding, chunk_embedding) similarities.append((chunk_id, similarity)) valid_vectors += 1 except Exception as e: logger.warning( f"Vector similarity chunk selection: failed to calculate similarity for chunk {chunk_id}: {e}" ) else: logger.warning( f"Vector similarity chunk selection: no vector found for chunk {chunk_id}" ) # Sort by similarity (highest first) and select top num_of_chunks similarities.sort(key=lambda x: x[1], reverse=True) selected_chunks = [chunk_id for chunk_id, _ in similarities[:num_of_chunks]] logger.debug( f"Vector similarity chunk selection: {len(selected_chunks)} chunks from {len(all_chunk_ids)} candidates" ) return selected_chunks except Exception as e: logger.error(f"[VECTOR_SIMILARITY] Error in vector similarity sorting: {e}") import traceback logger.error(f"[VECTOR_SIMILARITY] Traceback: {traceback.format_exc()}") # Fallback to simple truncation logger.debug("[VECTOR_SIMILARITY] Falling back to simple truncation") return all_chunk_ids[:num_of_chunks] class TokenTracker: """Track token usage for LLM calls.""" def __init__(self): self.reset() def __enter__(self): self.reset() return self def __exit__(self, exc_type, exc_val, exc_tb): print(self) def reset(self): self.prompt_tokens = 0 self.completion_tokens = 0 self.total_tokens = 0 self.call_count = 0 def add_usage(self, token_counts): """Add token usage from one LLM call. Args: token_counts: A dictionary containing prompt_tokens, completion_tokens, total_tokens """ self.prompt_tokens += token_counts.get("prompt_tokens", 0) self.completion_tokens += token_counts.get("completion_tokens", 0) # If total_tokens is provided, use it directly; otherwise calculate the sum if "total_tokens" in token_counts: self.total_tokens += token_counts["total_tokens"] else: self.total_tokens += token_counts.get( "prompt_tokens", 0 ) + token_counts.get("completion_tokens", 0) self.call_count += 1 def get_usage(self): """Get current usage statistics.""" return { "prompt_tokens": self.prompt_tokens, "completion_tokens": self.completion_tokens, "total_tokens": self.total_tokens, "call_count": self.call_count, } def __str__(self): usage = self.get_usage() return ( f"LLM call count: {usage['call_count']}, " f"Prompt tokens: {usage['prompt_tokens']}, " f"Completion tokens: {usage['completion_tokens']}, " f"Total tokens: {usage['total_tokens']}" ) async def apply_rerank_if_enabled( query: str, retrieved_docs: list[dict], global_config: dict, enable_rerank: bool = True, top_n: int = None, ) -> list[dict]: """ Apply reranking to retrieved documents if rerank is enabled. Args: query: The search query retrieved_docs: List of retrieved documents global_config: Global configuration containing rerank settings enable_rerank: Whether to enable reranking from query parameter top_n: Number of top documents to return after reranking Returns: Reranked documents if rerank is enabled, otherwise original documents """ if not enable_rerank or not retrieved_docs: return retrieved_docs rerank_func = global_config.get("rerank_model_func") if not rerank_func: logger.warning( "Rerank is enabled but no rerank model is configured. Please set up a rerank model or set enable_rerank=False in query parameters." ) return retrieved_docs try: # Apply reranking - let rerank_model_func handle top_k internally reranked_docs = await rerank_func( query=query, documents=retrieved_docs, top_n=top_n, ) if reranked_docs and len(reranked_docs) > 0: if len(reranked_docs) > top_n: reranked_docs = reranked_docs[:top_n] logger.info(f"Successfully reranked: {len(retrieved_docs)} chunks") return reranked_docs else: logger.warning("Rerank returned empty results, using original chunks") return retrieved_docs except Exception as e: logger.error(f"Error during reranking: {e}, using original chunks") return retrieved_docs async def process_chunks_unified( query: str, unique_chunks: list[dict], query_param: "QueryParam", global_config: dict, source_type: str = "mixed", chunk_token_limit: int = None, # Add parameter for dynamic token limit ) -> list[dict]: """ Unified processing for text chunks: deduplication, chunk_top_k limiting, reranking, and token truncation. Args: query: Search query for reranking chunks: List of text chunks to process query_param: Query parameters containing configuration global_config: Global configuration dictionary source_type: Source type for logging ("vector", "entity", "relationship", "mixed") chunk_token_limit: Dynamic token limit for chunks (if None, uses default) Returns: Processed and filtered list of text chunks """ if not unique_chunks: return [] origin_count = len(unique_chunks) # 1. Apply reranking if enabled and query is provided if query_param.enable_rerank and query and unique_chunks: # 保存 chunk_id 字段,因为 rerank 可能会丢失这个字段 chunk_ids = {} for chunk in unique_chunks: chunk_id = chunk.get("chunk_id") if chunk_id: chunk_ids[id(chunk)] = chunk_id rerank_top_k = query_param.chunk_top_k or len(unique_chunks) unique_chunks = await apply_rerank_if_enabled( query=query, retrieved_docs=unique_chunks, global_config=global_config, enable_rerank=query_param.enable_rerank, top_n=rerank_top_k, ) # 恢复 chunk_id 字段 for chunk in unique_chunks: if id(chunk) in chunk_ids: chunk["chunk_id"] = chunk_ids[id(chunk)] # 2. Filter by minimum rerank score if reranking is enabled if query_param.enable_rerank and unique_chunks: min_rerank_score = global_config.get("min_rerank_score", 0.5) if min_rerank_score > 0.0: original_count = len(unique_chunks) # Filter chunks with score below threshold filtered_chunks = [] for chunk in unique_chunks: rerank_score = chunk.get( "rerank_score", 1.0 ) # Default to 1.0 if no score if rerank_score >= min_rerank_score: filtered_chunks.append(chunk) unique_chunks = filtered_chunks filtered_count = original_count - len(unique_chunks) if filtered_count > 0: logger.info( f"Rerank filtering: {len(unique_chunks)} chunks remained (min rerank score: {min_rerank_score})" ) if not unique_chunks: return [] # 3. Apply chunk_top_k limiting if specified if query_param.chunk_top_k is not None and query_param.chunk_top_k > 0: if len(unique_chunks) > query_param.chunk_top_k: unique_chunks = unique_chunks[: query_param.chunk_top_k] logger.debug( f"Kept chunk_top-k: {len(unique_chunks)} chunks (deduplicated original: {origin_count})" ) # 4. Token-based final truncation tokenizer = global_config.get("tokenizer") if tokenizer and unique_chunks: # Set default chunk_token_limit if not provided if chunk_token_limit is None: # Get default from query_param or global_config chunk_token_limit = getattr( query_param, "max_total_tokens", global_config.get("MAX_TOTAL_TOKENS", DEFAULT_MAX_TOTAL_TOKENS), ) original_count = len(unique_chunks) # Keep chunk_id field, cause truncate_list_by_token_size will lose it chunk_ids_map = {} for i, chunk in enumerate(unique_chunks): chunk_id = chunk.get("chunk_id") if chunk_id: chunk_ids_map[i] = chunk_id unique_chunks = truncate_list_by_token_size( unique_chunks, key=lambda x: x.get("content", ""), max_token_size=chunk_token_limit, tokenizer=tokenizer, ) # restore chunk_id feiled for i, chunk in enumerate(unique_chunks): if i in chunk_ids_map: chunk["chunk_id"] = chunk_ids_map[i] logger.debug( f"Token truncation: {len(unique_chunks)} chunks from {original_count} " f"(chunk available tokens: {chunk_token_limit}, source: {source_type})" ) return unique_chunks def build_file_path(already_file_paths, data_list, target): """Build file path string with UTF-8 byte length limit and deduplication Args: already_file_paths: List of existing file paths data_list: List of data items containing file_path target: Target name for logging warnings Returns: str: Combined file paths separated by GRAPH_FIELD_SEP """ # set: deduplication file_paths_set = {fp for fp in already_file_paths if fp} # string: filter empty value and keep file order in already_file_paths file_paths = GRAPH_FIELD_SEP.join(fp for fp in already_file_paths if fp) # Check if initial file_paths already exceeds byte length limit if len(file_paths.encode("utf-8")) >= DEFAULT_MAX_FILE_PATH_LENGTH: logger.warning( f"Initial file_paths already exceeds {DEFAULT_MAX_FILE_PATH_LENGTH} bytes for {target}, " f"current size: {len(file_paths.encode('utf-8'))} bytes" ) # ignored file_paths file_paths_ignore = "" # add file_paths for dp in data_list: cur_file_path = dp.get("file_path") # empty if not cur_file_path: continue # skip duplicate item if cur_file_path in file_paths_set: continue # add file_paths_set.add(cur_file_path) # check the UTF-8 byte length new_addition = GRAPH_FIELD_SEP + cur_file_path if file_paths else cur_file_path if ( len(file_paths.encode("utf-8")) + len(new_addition.encode("utf-8")) < DEFAULT_MAX_FILE_PATH_LENGTH - 5 ): # append file_paths += new_addition else: # ignore file_paths_ignore += GRAPH_FIELD_SEP + cur_file_path if file_paths_ignore: logger.warning( f"File paths exceed {DEFAULT_MAX_FILE_PATH_LENGTH} bytes for {target}, " f"ignoring file path: {file_paths_ignore}" ) return file_paths def generate_track_id(prefix: str = "upload") -> str: """Generate a unique tracking ID with timestamp and UUID Args: prefix: Prefix for the track ID (e.g., 'upload', 'insert') Returns: str: Unique tracking ID in format: {prefix}_{timestamp}_{uuid} """ timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") unique_id = str(uuid.uuid4())[:8] # Use first 8 characters of UUID return f"{prefix}_{timestamp}_{unique_id}" def get_pinyin_sort_key(text: str) -> str: """Generate sort key for Chinese pinyin sorting This function uses pypinyin for true Chinese pinyin sorting. If pypinyin is not available, it falls back to simple lowercase string sorting. Args: text: Text to generate sort key for Returns: str: Sort key that can be used for comparison and sorting """ if not text: return "" if _PYPINYIN_AVAILABLE: try: # Convert Chinese characters to pinyin, keep non-Chinese as-is pinyin_list = pypinyin.lazy_pinyin(text, style=pypinyin.Style.NORMAL) return "".join(pinyin_list).lower() except Exception: # Silently fall back to simple string sorting on any error return text.lower() else: # pypinyin not available, use simple string sorting return text.lower()