import os import asyncio from lightrag import LightRAG, QueryParam from lightrag.llm.openai import gpt_4o_mini_complete from lightrag.kg.shared_storage import initialize_pipeline_status ######### # Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert() # import nest_asyncio # nest_asyncio.apply() ######### WORKING_DIR = "./local_neo4jWorkDir" if not os.path.exists(WORKING_DIR): os.mkdir(WORKING_DIR) async def initialize_rag(): rag = LightRAG( working_dir=WORKING_DIR, llm_model_func=gpt_4o_mini_complete, # Use gpt_4o_mini_complete LLM model graph_storage="Neo4JStorage", log_level="INFO", # llm_model_func=gpt_4o_complete # Optionally, use a stronger model ) await rag.initialize_storages() await initialize_pipeline_status() return rag def main(): # Initialize RAG instance rag = asyncio.run(initialize_rag()) with open("./book.txt", "r", encoding="utf-8") as f: rag.insert(f.read()) # Perform naive search print( rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")) ) # Perform local search print( rag.query("What are the top themes in this story?", param=QueryParam(mode="local")) ) # Perform global search print( rag.query("What are the top themes in this story?", param=QueryParam(mode="global")) ) # Perform hybrid search print( rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")) ) if __name__ == "__main__": main()