import base64 import copy import json import os import re import struct from functools import lru_cache from typing import List, Dict, Callable, Any, Union, Optional import aioboto3 import aiohttp import numpy as np import ollama import torch from openai import ( AsyncOpenAI, APIConnectionError, RateLimitError, APITimeoutError, AsyncAzureOpenAI, ) from pydantic import BaseModel, Field from tenacity import ( retry, stop_after_attempt, wait_exponential, retry_if_exception_type, ) from transformers import AutoTokenizer, AutoModelForCausalLM from .utils import ( wrap_embedding_func_with_attrs, locate_json_string_body_from_string, safe_unicode_decode, logger, ) import sys if sys.version_info < (3, 9): from typing import AsyncIterator else: from collections.abc import AsyncIterator os.environ["TOKENIZERS_PARALLELISM"] = "false" @retry( stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10), retry=retry_if_exception_type( (RateLimitError, APIConnectionError, APITimeoutError) ), ) async def openai_complete_if_cache( model, prompt, system_prompt=None, history_messages=[], base_url=None, api_key=None, **kwargs, ) -> str: if api_key: os.environ["OPENAI_API_KEY"] = api_key openai_async_client = ( AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url) ) kwargs.pop("hashing_kv", None) kwargs.pop("keyword_extraction", None) messages = [] if system_prompt: messages.append({"role": "system", "content": system_prompt}) messages.extend(history_messages) messages.append({"role": "user", "content": prompt}) # 添加日志输出 logger.debug("===== Query Input to LLM =====") logger.debug(f"Query: {prompt}") logger.debug(f"System prompt: {system_prompt}") logger.debug("Full context:") if "response_format" in kwargs: response = await openai_async_client.beta.chat.completions.parse( model=model, messages=messages, **kwargs ) else: response = await openai_async_client.chat.completions.create( model=model, messages=messages, **kwargs ) if hasattr(response, "__aiter__"): async def inner(): async for chunk in response: content = chunk.choices[0].delta.content if content is None: continue if r"\u" in content: content = safe_unicode_decode(content.encode("utf-8")) yield content return inner() else: content = response.choices[0].message.content if r"\u" in content: content = safe_unicode_decode(content.encode("utf-8")) return content @retry( stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10), retry=retry_if_exception_type( (RateLimitError, APIConnectionError, APIConnectionError) ), ) async def azure_openai_complete_if_cache( model, prompt, system_prompt=None, history_messages=[], base_url=None, api_key=None, api_version=None, **kwargs, ): if api_key: os.environ["AZURE_OPENAI_API_KEY"] = api_key if base_url: os.environ["AZURE_OPENAI_ENDPOINT"] = base_url if api_version: os.environ["AZURE_OPENAI_API_VERSION"] = api_version openai_async_client = AsyncAzureOpenAI( azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"), api_key=os.getenv("AZURE_OPENAI_API_KEY"), api_version=os.getenv("AZURE_OPENAI_API_VERSION"), ) kwargs.pop("hashing_kv", None) messages = [] if system_prompt: messages.append({"role": "system", "content": system_prompt}) messages.extend(history_messages) if prompt is not None: messages.append({"role": "user", "content": prompt}) if "response_format" in kwargs: response = await openai_async_client.beta.chat.completions.parse( model=model, messages=messages, **kwargs ) else: response = await openai_async_client.chat.completions.create( model=model, messages=messages, **kwargs ) if hasattr(response, "__aiter__"): async def inner(): async for chunk in response: if len(chunk.choices) == 0: continue content = chunk.choices[0].delta.content if content is None: continue if r"\u" in content: content = safe_unicode_decode(content.encode("utf-8")) yield content return inner() else: content = response.choices[0].message.content if r"\u" in content: content = safe_unicode_decode(content.encode("utf-8")) return content class BedrockError(Exception): """Generic error for issues related to Amazon Bedrock""" @retry( stop=stop_after_attempt(5), wait=wait_exponential(multiplier=1, max=60), retry=retry_if_exception_type((BedrockError)), ) async def bedrock_complete_if_cache( model, prompt, system_prompt=None, history_messages=[], aws_access_key_id=None, aws_secret_access_key=None, aws_session_token=None, **kwargs, ) -> str: os.environ["AWS_ACCESS_KEY_ID"] = os.environ.get( "AWS_ACCESS_KEY_ID", aws_access_key_id ) os.environ["AWS_SECRET_ACCESS_KEY"] = os.environ.get( "AWS_SECRET_ACCESS_KEY", aws_secret_access_key ) os.environ["AWS_SESSION_TOKEN"] = os.environ.get( "AWS_SESSION_TOKEN", aws_session_token ) kwargs.pop("hashing_kv", None) # Fix message history format messages = [] for history_message in history_messages: message = copy.copy(history_message) message["content"] = [{"text": message["content"]}] messages.append(message) # Add user prompt messages.append({"role": "user", "content": [{"text": prompt}]}) # Initialize Converse API arguments args = {"modelId": model, "messages": messages} # Define system prompt if system_prompt: args["system"] = [{"text": system_prompt}] # Map and set up inference parameters inference_params_map = { "max_tokens": "maxTokens", "top_p": "topP", "stop_sequences": "stopSequences", } if inference_params := list( set(kwargs) & set(["max_tokens", "temperature", "top_p", "stop_sequences"]) ): args["inferenceConfig"] = {} for param in inference_params: args["inferenceConfig"][inference_params_map.get(param, param)] = ( kwargs.pop(param) ) # Call model via Converse API session = aioboto3.Session() async with session.client("bedrock-runtime") as bedrock_async_client: try: response = await bedrock_async_client.converse(**args, **kwargs) except Exception as e: raise BedrockError(e) return response["output"]["message"]["content"][0]["text"] @lru_cache(maxsize=1) def initialize_hf_model(model_name): hf_tokenizer = AutoTokenizer.from_pretrained( model_name, device_map="auto", trust_remote_code=True ) hf_model = AutoModelForCausalLM.from_pretrained( model_name, device_map="auto", trust_remote_code=True ) if hf_tokenizer.pad_token is None: hf_tokenizer.pad_token = hf_tokenizer.eos_token return hf_model, hf_tokenizer @retry( stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10), retry=retry_if_exception_type( (RateLimitError, APIConnectionError, APITimeoutError) ), ) async def hf_model_if_cache( model, prompt, system_prompt=None, history_messages=[], **kwargs, ) -> str: model_name = model hf_model, hf_tokenizer = initialize_hf_model(model_name) messages = [] if system_prompt: messages.append({"role": "system", "content": system_prompt}) messages.extend(history_messages) messages.append({"role": "user", "content": prompt}) kwargs.pop("hashing_kv", None) input_prompt = "" try: input_prompt = hf_tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) except Exception: try: ori_message = copy.deepcopy(messages) if messages[0]["role"] == "system": messages[1]["content"] = ( "" + messages[0]["content"] + "\n" + messages[1]["content"] ) messages = messages[1:] input_prompt = hf_tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) except Exception: len_message = len(ori_message) for msgid in range(len_message): input_prompt = ( input_prompt + "<" + ori_message[msgid]["role"] + ">" + ori_message[msgid]["content"] + "\n" ) input_ids = hf_tokenizer( input_prompt, return_tensors="pt", padding=True, truncation=True ).to("cuda") inputs = {k: v.to(hf_model.device) for k, v in input_ids.items()} output = hf_model.generate( **input_ids, max_new_tokens=512, num_return_sequences=1, early_stopping=True ) response_text = hf_tokenizer.decode( output[0][len(inputs["input_ids"][0]) :], skip_special_tokens=True ) return response_text @retry( stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10), retry=retry_if_exception_type( (RateLimitError, APIConnectionError, APITimeoutError) ), ) async def ollama_model_if_cache( model, prompt, system_prompt=None, history_messages=[], **kwargs, ) -> Union[str, AsyncIterator[str]]: stream = True if kwargs.get("stream") else False kwargs.pop("max_tokens", None) # kwargs.pop("response_format", None) # allow json host = kwargs.pop("host", None) timeout = kwargs.pop("timeout", None) kwargs.pop("hashing_kv", None) ollama_client = ollama.AsyncClient(host=host, timeout=timeout) messages = [] if system_prompt: messages.append({"role": "system", "content": system_prompt}) messages.extend(history_messages) messages.append({"role": "user", "content": prompt}) response = await ollama_client.chat(model=model, messages=messages, **kwargs) if stream: """cannot cache stream response""" async def inner(): async for chunk in response: yield chunk["message"]["content"] return inner() else: return response["message"]["content"] async def lollms_model_if_cache( model, prompt, system_prompt=None, history_messages=[], base_url="http://localhost:9600", **kwargs, ) -> Union[str, AsyncIterator[str]]: """Client implementation for lollms generation.""" stream = True if kwargs.get("stream") else False # Extract lollms specific parameters request_data = { "prompt": prompt, "model_name": model, "personality": kwargs.get("personality", -1), "n_predict": kwargs.get("n_predict", None), "stream": stream, "temperature": kwargs.get("temperature", 0.1), "top_k": kwargs.get("top_k", 50), "top_p": kwargs.get("top_p", 0.95), "repeat_penalty": kwargs.get("repeat_penalty", 0.8), "repeat_last_n": kwargs.get("repeat_last_n", 40), "seed": kwargs.get("seed", None), "n_threads": kwargs.get("n_threads", 8), } # Prepare the full prompt including history full_prompt = "" if system_prompt: full_prompt += f"{system_prompt}\n" for msg in history_messages: full_prompt += f"{msg['role']}: {msg['content']}\n" full_prompt += prompt request_data["prompt"] = full_prompt timeout = aiohttp.ClientTimeout(total=kwargs.get("timeout", None)) async with aiohttp.ClientSession(timeout=timeout) as session: if stream: async def inner(): async with session.post( f"{base_url}/lollms_generate", json=request_data ) as response: async for line in response.content: yield line.decode().strip() return inner() else: async with session.post( f"{base_url}/lollms_generate", json=request_data ) as response: return await response.text() @lru_cache(maxsize=1) def initialize_lmdeploy_pipeline( model, tp=1, chat_template=None, log_level="WARNING", model_format="hf", quant_policy=0, ): from lmdeploy import pipeline, ChatTemplateConfig, TurbomindEngineConfig lmdeploy_pipe = pipeline( model_path=model, backend_config=TurbomindEngineConfig( tp=tp, model_format=model_format, quant_policy=quant_policy ), chat_template_config=( ChatTemplateConfig(model_name=chat_template) if chat_template else None ), log_level="WARNING", ) return lmdeploy_pipe @retry( stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10), retry=retry_if_exception_type( (RateLimitError, APIConnectionError, APITimeoutError) ), ) async def lmdeploy_model_if_cache( model, prompt, system_prompt=None, history_messages=[], chat_template=None, model_format="hf", quant_policy=0, **kwargs, ) -> str: """ Args: model (str): The path to the model. It could be one of the following options: - i) A local directory path of a turbomind model which is converted by `lmdeploy convert` command or download from ii) and iii). - ii) The model_id of a lmdeploy-quantized model hosted inside a model repo on huggingface.co, such as "InternLM/internlm-chat-20b-4bit", "lmdeploy/llama2-chat-70b-4bit", etc. - iii) The model_id of a model hosted inside a model repo on huggingface.co, such as "internlm/internlm-chat-7b", "Qwen/Qwen-7B-Chat ", "baichuan-inc/Baichuan2-7B-Chat" and so on. chat_template (str): needed when model is a pytorch model on huggingface.co, such as "internlm-chat-7b", "Qwen-7B-Chat ", "Baichuan2-7B-Chat" and so on, and when the model name of local path did not match the original model name in HF. tp (int): tensor parallel prompt (Union[str, List[str]]): input texts to be completed. do_preprocess (bool): whether pre-process the messages. Default to True, which means chat_template will be applied. skip_special_tokens (bool): Whether or not to remove special tokens in the decoding. Default to be True. do_sample (bool): Whether or not to use sampling, use greedy decoding otherwise. Default to be False, which means greedy decoding will be applied. """ try: import lmdeploy from lmdeploy import version_info, GenerationConfig except Exception: raise ImportError("Please install lmdeploy before initialize lmdeploy backend.") kwargs.pop("hashing_kv", None) kwargs.pop("response_format", None) max_new_tokens = kwargs.pop("max_tokens", 512) tp = kwargs.pop("tp", 1) skip_special_tokens = kwargs.pop("skip_special_tokens", True) do_preprocess = kwargs.pop("do_preprocess", True) do_sample = kwargs.pop("do_sample", False) gen_params = kwargs version = version_info if do_sample is not None and version < (0, 6, 0): raise RuntimeError( "`do_sample` parameter is not supported by lmdeploy until " f"v0.6.0, but currently using lmdeloy {lmdeploy.__version__}" ) else: do_sample = True gen_params.update(do_sample=do_sample) lmdeploy_pipe = initialize_lmdeploy_pipeline( model=model, tp=tp, chat_template=chat_template, model_format=model_format, quant_policy=quant_policy, log_level="WARNING", ) messages = [] if system_prompt: messages.append({"role": "system", "content": system_prompt}) messages.extend(history_messages) messages.append({"role": "user", "content": prompt}) gen_config = GenerationConfig( skip_special_tokens=skip_special_tokens, max_new_tokens=max_new_tokens, **gen_params, ) response = "" async for res in lmdeploy_pipe.generate( messages, gen_config=gen_config, do_preprocess=do_preprocess, stream_response=False, session_id=1, ): response += res.response return response class GPTKeywordExtractionFormat(BaseModel): high_level_keywords: List[str] low_level_keywords: List[str] async def openai_complete( prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs ) -> Union[str, AsyncIterator[str]]: keyword_extraction = kwargs.pop("keyword_extraction", None) if keyword_extraction: kwargs["response_format"] = "json" model_name = kwargs["hashing_kv"].global_config["llm_model_name"] return await openai_complete_if_cache( model_name, prompt, system_prompt=system_prompt, history_messages=history_messages, **kwargs, ) async def gpt_4o_complete( prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs ) -> str: keyword_extraction = kwargs.pop("keyword_extraction", None) if keyword_extraction: kwargs["response_format"] = GPTKeywordExtractionFormat return await openai_complete_if_cache( "gpt-4o", prompt, system_prompt=system_prompt, history_messages=history_messages, **kwargs, ) async def gpt_4o_mini_complete( prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs ) -> str: keyword_extraction = kwargs.pop("keyword_extraction", None) if keyword_extraction: kwargs["response_format"] = GPTKeywordExtractionFormat return await openai_complete_if_cache( "gpt-4o-mini", prompt, system_prompt=system_prompt, history_messages=history_messages, **kwargs, ) async def nvidia_openai_complete( prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs ) -> str: keyword_extraction = kwargs.pop("keyword_extraction", None) result = await openai_complete_if_cache( "nvidia/llama-3.1-nemotron-70b-instruct", # context length 128k prompt, system_prompt=system_prompt, history_messages=history_messages, base_url="https://integrate.api.nvidia.com/v1", **kwargs, ) if keyword_extraction: # TODO: use JSON API return locate_json_string_body_from_string(result) return result async def azure_openai_complete( prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs ) -> str: keyword_extraction = kwargs.pop("keyword_extraction", None) result = await azure_openai_complete_if_cache( "conversation-4o-mini", prompt, system_prompt=system_prompt, history_messages=history_messages, **kwargs, ) if keyword_extraction: # TODO: use JSON API return locate_json_string_body_from_string(result) return result async def bedrock_complete( prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs ) -> str: keyword_extraction = kwargs.pop("keyword_extraction", None) result = await bedrock_complete_if_cache( "anthropic.claude-3-haiku-20240307-v1:0", prompt, system_prompt=system_prompt, history_messages=history_messages, **kwargs, ) if keyword_extraction: # TODO: use JSON API return locate_json_string_body_from_string(result) return result async def hf_model_complete( prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs ) -> str: keyword_extraction = kwargs.pop("keyword_extraction", None) model_name = kwargs["hashing_kv"].global_config["llm_model_name"] result = await hf_model_if_cache( model_name, prompt, system_prompt=system_prompt, history_messages=history_messages, **kwargs, ) if keyword_extraction: # TODO: use JSON API return locate_json_string_body_from_string(result) return result async def ollama_model_complete( prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs ) -> Union[str, AsyncIterator[str]]: keyword_extraction = kwargs.pop("keyword_extraction", None) if keyword_extraction: kwargs["format"] = "json" model_name = kwargs["hashing_kv"].global_config["llm_model_name"] return await ollama_model_if_cache( model_name, prompt, system_prompt=system_prompt, history_messages=history_messages, **kwargs, ) async def lollms_model_complete( prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs ) -> Union[str, AsyncIterator[str]]: """Complete function for lollms model generation.""" # Extract and remove keyword_extraction from kwargs if present keyword_extraction = kwargs.pop("keyword_extraction", None) # Get model name from config model_name = kwargs["hashing_kv"].global_config["llm_model_name"] # If keyword extraction is needed, we might need to modify the prompt # or add specific parameters for JSON output (if lollms supports it) if keyword_extraction: # Note: You might need to adjust this based on how lollms handles structured output pass return await lollms_model_if_cache( model_name, prompt, system_prompt=system_prompt, history_messages=history_messages, **kwargs, ) @retry( stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10), retry=retry_if_exception_type( (RateLimitError, APIConnectionError, APITimeoutError) ), ) async def zhipu_complete_if_cache( prompt: Union[str, List[Dict[str, str]]], model: str = "glm-4-flashx", # The most cost/performance balance model in glm-4 series api_key: Optional[str] = None, system_prompt: Optional[str] = None, history_messages: List[Dict[str, str]] = [], **kwargs, ) -> str: # dynamically load ZhipuAI try: from zhipuai import ZhipuAI except ImportError: raise ImportError("Please install zhipuai before initialize zhipuai backend.") if api_key: client = ZhipuAI(api_key=api_key) else: # please set ZHIPUAI_API_KEY in your environment # os.environ["ZHIPUAI_API_KEY"] client = ZhipuAI() messages = [] if not system_prompt: system_prompt = "You are a helpful assistant. 注意内容里的敏感词用***替换。" # Add system prompt if provided if system_prompt: messages.append({"role": "system", "content": system_prompt}) messages.extend(history_messages) messages.append({"role": "user", "content": prompt}) # Add debug logging logger.debug("===== Query Input to LLM =====") logger.debug(f"Query: {prompt}") logger.debug(f"System prompt: {system_prompt}") # Remove unsupported kwargs kwargs = { k: v for k, v in kwargs.items() if k not in ["hashing_kv", "keyword_extraction"] } response = client.chat.completions.create(model=model, messages=messages, **kwargs) return response.choices[0].message.content async def zhipu_complete( prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs ): # Pop keyword_extraction from kwargs to avoid passing it to zhipu_complete_if_cache keyword_extraction = kwargs.pop("keyword_extraction", None) if keyword_extraction: # Add a system prompt to guide the model to return JSON format extraction_prompt = """You are a helpful assistant that extracts keywords from text. Please analyze the content and extract two types of keywords: 1. High-level keywords: Important concepts and main themes 2. Low-level keywords: Specific details and supporting elements Return your response in this exact JSON format: { "high_level_keywords": ["keyword1", "keyword2"], "low_level_keywords": ["keyword1", "keyword2", "keyword3"] } Only return the JSON, no other text.""" # Combine with existing system prompt if any if system_prompt: system_prompt = f"{system_prompt}\n\n{extraction_prompt}" else: system_prompt = extraction_prompt try: response = await zhipu_complete_if_cache( prompt=prompt, system_prompt=system_prompt, history_messages=history_messages, **kwargs, ) # Try to parse as JSON try: data = json.loads(response) return GPTKeywordExtractionFormat( high_level_keywords=data.get("high_level_keywords", []), low_level_keywords=data.get("low_level_keywords", []), ) except json.JSONDecodeError: # If direct JSON parsing fails, try to extract JSON from text match = re.search(r"\{[\s\S]*\}", response) if match: try: data = json.loads(match.group()) return GPTKeywordExtractionFormat( high_level_keywords=data.get("high_level_keywords", []), low_level_keywords=data.get("low_level_keywords", []), ) except json.JSONDecodeError: pass # If all parsing fails, log warning and return empty format logger.warning( f"Failed to parse keyword extraction response: {response}" ) return GPTKeywordExtractionFormat( high_level_keywords=[], low_level_keywords=[] ) except Exception as e: logger.error(f"Error during keyword extraction: {str(e)}") return GPTKeywordExtractionFormat( high_level_keywords=[], low_level_keywords=[] ) else: # For non-keyword-extraction, just return the raw response string return await zhipu_complete_if_cache( prompt=prompt, system_prompt=system_prompt, history_messages=history_messages, **kwargs, ) @wrap_embedding_func_with_attrs(embedding_dim=1024, max_token_size=8192) @retry( stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=60), retry=retry_if_exception_type( (RateLimitError, APIConnectionError, APITimeoutError) ), ) async def zhipu_embedding( texts: list[str], model: str = "embedding-3", api_key: str = None, **kwargs ) -> np.ndarray: # dynamically load ZhipuAI try: from zhipuai import ZhipuAI except ImportError: raise ImportError("Please install zhipuai before initialize zhipuai backend.") if api_key: client = ZhipuAI(api_key=api_key) else: # please set ZHIPUAI_API_KEY in your environment # os.environ["ZHIPUAI_API_KEY"] client = ZhipuAI() # Convert single text to list if needed if isinstance(texts, str): texts = [texts] embeddings = [] for text in texts: try: response = client.embeddings.create(model=model, input=[text], **kwargs) embeddings.append(response.data[0].embedding) except Exception as e: raise Exception(f"Error calling ChatGLM Embedding API: {str(e)}") return np.array(embeddings) @wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8192) @retry( stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=60), retry=retry_if_exception_type( (RateLimitError, APIConnectionError, APITimeoutError) ), ) async def openai_embedding( texts: list[str], model: str = "text-embedding-3-small", base_url: str = None, api_key: str = None, ) -> np.ndarray: if api_key: os.environ["OPENAI_API_KEY"] = api_key openai_async_client = ( AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url) ) response = await openai_async_client.embeddings.create( model=model, input=texts, encoding_format="float" ) return np.array([dp.embedding for dp in response.data]) async def fetch_data(url, headers, data): async with aiohttp.ClientSession() as session: async with session.post(url, headers=headers, json=data) as response: response_json = await response.json() data_list = response_json.get("data", []) return data_list async def jina_embedding( texts: list[str], dimensions: int = 1024, late_chunking: bool = False, base_url: str = None, api_key: str = None, ) -> np.ndarray: if api_key: os.environ["JINA_API_KEY"] = api_key url = "https://api.jina.ai/v1/embeddings" if not base_url else base_url headers = { "Content-Type": "application/json", "Authorization": f"Bearer {os.environ['JINA_API_KEY']}", } data = { "model": "jina-embeddings-v3", "normalized": True, "embedding_type": "float", "dimensions": f"{dimensions}", "late_chunking": late_chunking, "input": texts, } data_list = await fetch_data(url, headers, data) return np.array([dp["embedding"] for dp in data_list]) @wrap_embedding_func_with_attrs(embedding_dim=2048, max_token_size=512) @retry( stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=60), retry=retry_if_exception_type( (RateLimitError, APIConnectionError, APITimeoutError) ), ) async def nvidia_openai_embedding( texts: list[str], model: str = "nvidia/llama-3.2-nv-embedqa-1b-v1", # refer to https://build.nvidia.com/nim?filters=usecase%3Ausecase_text_to_embedding base_url: str = "https://integrate.api.nvidia.com/v1", api_key: str = None, input_type: str = "passage", # query for retrieval, passage for embedding trunc: str = "NONE", # NONE or START or END encode: str = "float", # float or base64 ) -> np.ndarray: if api_key: os.environ["OPENAI_API_KEY"] = api_key openai_async_client = ( AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url) ) response = await openai_async_client.embeddings.create( model=model, input=texts, encoding_format=encode, extra_body={"input_type": input_type, "truncate": trunc}, ) return np.array([dp.embedding for dp in response.data]) @wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8191) @retry( stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10), retry=retry_if_exception_type( (RateLimitError, APIConnectionError, APITimeoutError) ), ) async def azure_openai_embedding( texts: list[str], model: str = "text-embedding-3-small", base_url: str = None, api_key: str = None, api_version: str = None, ) -> np.ndarray: if api_key: os.environ["AZURE_OPENAI_API_KEY"] = api_key if base_url: os.environ["AZURE_OPENAI_ENDPOINT"] = base_url if api_version: os.environ["AZURE_OPENAI_API_VERSION"] = api_version openai_async_client = AsyncAzureOpenAI( azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"), api_key=os.getenv("AZURE_OPENAI_API_KEY"), api_version=os.getenv("AZURE_OPENAI_API_VERSION"), ) response = await openai_async_client.embeddings.create( model=model, input=texts, encoding_format="float" ) return np.array([dp.embedding for dp in response.data]) @retry( stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=60), retry=retry_if_exception_type( (RateLimitError, APIConnectionError, APITimeoutError) ), ) async def siliconcloud_embedding( texts: list[str], model: str = "netease-youdao/bce-embedding-base_v1", base_url: str = "https://api.siliconflow.cn/v1/embeddings", max_token_size: int = 512, api_key: str = None, ) -> np.ndarray: if api_key and not api_key.startswith("Bearer "): api_key = "Bearer " + api_key headers = {"Authorization": api_key, "Content-Type": "application/json"} truncate_texts = [text[0:max_token_size] for text in texts] payload = {"model": model, "input": truncate_texts, "encoding_format": "base64"} base64_strings = [] async with aiohttp.ClientSession() as session: async with session.post(base_url, headers=headers, json=payload) as response: content = await response.json() if "code" in content: raise ValueError(content) base64_strings = [item["embedding"] for item in content["data"]] embeddings = [] for string in base64_strings: decode_bytes = base64.b64decode(string) n = len(decode_bytes) // 4 float_array = struct.unpack("<" + "f" * n, decode_bytes) embeddings.append(float_array) return np.array(embeddings) # @wrap_embedding_func_with_attrs(embedding_dim=1024, max_token_size=8192) # @retry( # stop=stop_after_attempt(3), # wait=wait_exponential(multiplier=1, min=4, max=10), # retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)), # TODO: fix exceptions # ) async def bedrock_embedding( texts: list[str], model: str = "amazon.titan-embed-text-v2:0", aws_access_key_id=None, aws_secret_access_key=None, aws_session_token=None, ) -> np.ndarray: os.environ["AWS_ACCESS_KEY_ID"] = os.environ.get( "AWS_ACCESS_KEY_ID", aws_access_key_id ) os.environ["AWS_SECRET_ACCESS_KEY"] = os.environ.get( "AWS_SECRET_ACCESS_KEY", aws_secret_access_key ) os.environ["AWS_SESSION_TOKEN"] = os.environ.get( "AWS_SESSION_TOKEN", aws_session_token ) session = aioboto3.Session() async with session.client("bedrock-runtime") as bedrock_async_client: if (model_provider := model.split(".")[0]) == "amazon": embed_texts = [] for text in texts: if "v2" in model: body = json.dumps( { "inputText": text, # 'dimensions': embedding_dim, "embeddingTypes": ["float"], } ) elif "v1" in model: body = json.dumps({"inputText": text}) else: raise ValueError(f"Model {model} is not supported!") response = await bedrock_async_client.invoke_model( modelId=model, body=body, accept="application/json", contentType="application/json", ) response_body = await response.get("body").json() embed_texts.append(response_body["embedding"]) elif model_provider == "cohere": body = json.dumps( {"texts": texts, "input_type": "search_document", "truncate": "NONE"} ) response = await bedrock_async_client.invoke_model( model=model, body=body, accept="application/json", contentType="application/json", ) response_body = json.loads(response.get("body").read()) embed_texts = response_body["embeddings"] else: raise ValueError(f"Model provider '{model_provider}' is not supported!") return np.array(embed_texts) async def hf_embedding(texts: list[str], tokenizer, embed_model) -> np.ndarray: device = next(embed_model.parameters()).device input_ids = tokenizer( texts, return_tensors="pt", padding=True, truncation=True ).input_ids.to(device) with torch.no_grad(): outputs = embed_model(input_ids) embeddings = outputs.last_hidden_state.mean(dim=1) if embeddings.dtype == torch.bfloat16: return embeddings.detach().to(torch.float32).cpu().numpy() else: return embeddings.detach().cpu().numpy() async def ollama_embedding(texts: list[str], embed_model, **kwargs) -> np.ndarray: """ Deprecated in favor of `embed`. """ embed_text = [] ollama_client = ollama.Client(**kwargs) for text in texts: data = ollama_client.embeddings(model=embed_model, prompt=text) embed_text.append(data["embedding"]) return embed_text async def ollama_embed(texts: list[str], embed_model, **kwargs) -> np.ndarray: ollama_client = ollama.Client(**kwargs) data = ollama_client.embed(model=embed_model, input=texts) return data["embeddings"] async def lollms_embed( texts: List[str], embed_model=None, base_url="http://localhost:9600", **kwargs ) -> np.ndarray: """ Generate embeddings for a list of texts using lollms server. Args: texts: List of strings to embed embed_model: Model name (not used directly as lollms uses configured vectorizer) base_url: URL of the lollms server **kwargs: Additional arguments passed to the request Returns: np.ndarray: Array of embeddings """ async with aiohttp.ClientSession() as session: embeddings = [] for text in texts: request_data = {"text": text} async with session.post( f"{base_url}/lollms_embed", json=request_data ) as response: result = await response.json() embeddings.append(result["vector"]) return np.array(embeddings) class Model(BaseModel): """ This is a Pydantic model class named 'Model' that is used to define a custom language model. Attributes: gen_func (Callable[[Any], str]): A callable function that generates the response from the language model. The function should take any argument and return a string. kwargs (Dict[str, Any]): A dictionary that contains the arguments to pass to the callable function. This could include parameters such as the model name, API key, etc. Example usage: Model(gen_func=openai_complete_if_cache, kwargs={"model": "gpt-4", "api_key": os.environ["OPENAI_API_KEY_1"]}) In this example, 'openai_complete_if_cache' is the callable function that generates the response from the OpenAI model. The 'kwargs' dictionary contains the model name and API key to be passed to the function. """ gen_func: Callable[[Any], str] = Field( ..., description="A function that generates the response from the llm. The response must be a string", ) kwargs: Dict[str, Any] = Field( ..., description="The arguments to pass to the callable function. Eg. the api key, model name, etc", ) class Config: arbitrary_types_allowed = True class MultiModel: """ Distributes the load across multiple language models. Useful for circumventing low rate limits with certain api providers especially if you are on the free tier. Could also be used for spliting across diffrent models or providers. Attributes: models (List[Model]): A list of language models to be used. Usage example: ```python models = [ Model(gen_func=openai_complete_if_cache, kwargs={"model": "gpt-4", "api_key": os.environ["OPENAI_API_KEY_1"]}), Model(gen_func=openai_complete_if_cache, kwargs={"model": "gpt-4", "api_key": os.environ["OPENAI_API_KEY_2"]}), Model(gen_func=openai_complete_if_cache, kwargs={"model": "gpt-4", "api_key": os.environ["OPENAI_API_KEY_3"]}), Model(gen_func=openai_complete_if_cache, kwargs={"model": "gpt-4", "api_key": os.environ["OPENAI_API_KEY_4"]}), Model(gen_func=openai_complete_if_cache, kwargs={"model": "gpt-4", "api_key": os.environ["OPENAI_API_KEY_5"]}), ] multi_model = MultiModel(models) rag = LightRAG( llm_model_func=multi_model.llm_model_func / ..other args ) ``` """ def __init__(self, models: List[Model]): self._models = models self._current_model = 0 def _next_model(self): self._current_model = (self._current_model + 1) % len(self._models) return self._models[self._current_model] async def llm_model_func( self, prompt, system_prompt=None, history_messages=[], **kwargs ) -> str: kwargs.pop("model", None) # stop from overwriting the custom model name kwargs.pop("keyword_extraction", None) kwargs.pop("mode", None) next_model = self._next_model() args = dict( prompt=prompt, system_prompt=system_prompt, history_messages=history_messages, **kwargs, **next_model.kwargs, ) return await next_model.gen_func(**args) if __name__ == "__main__": import asyncio async def main(): result = await gpt_4o_mini_complete("How are you?") print(result) asyncio.run(main())