import asyncio #import html #import os from dataclasses import dataclass from typing import Any, Union, cast import networkx as nx import numpy as np import array from ..utils import logger from ..base import ( BaseGraphStorage, BaseKVStorage, BaseVectorStorage, ) import oracledb class OracleDB: def __init__(self,config,**kwargs): self.host = config.get("host", None) self.port = config.get("port", None) self.user = config.get("user", None) self.password = config.get("password", None) self.dsn = config.get("dsn", None) self.config_dir = config.get("config_dir", None) self.wallet_location = config.get("wallet_location", None) self.wallet_password = config.get("wallet_password", None) self.workspace = config.get("workspace", None) self.max = 12 self.increment = 1 logger.info(f"Using the label {self.workspace} for Oracle Graph as identifier") if self.user is None or self.password is None: raise ValueError("Missing database user or password in addon_params") try: oracledb.defaults.fetch_lobs = False self.pool = oracledb.create_pool_async( user = self.user, password = self.password, dsn = self.dsn, config_dir = self.config_dir, wallet_location = self.wallet_location, wallet_password = self.wallet_password, min = 1, max = self.max, increment = self.increment ) logger.info(f"Connected to Oracle database at {self.dsn}") except Exception as e: logger.error(f"Failed to connect to Oracle database at {self.dsn}") logger.error(f"Oracle database error: {e}") raise def numpy_converter_in(self, value): """Convert numpy array to array.array""" if value.dtype == np.float64: dtype = "d" elif value.dtype == np.float32: dtype = "f" else: dtype = "b" return array.array(dtype, value) def input_type_handler(self, cursor, value, arraysize): """Set the type handler for the input data""" if isinstance(value, np.ndarray): return cursor.var( oracledb.DB_TYPE_VECTOR, arraysize=arraysize, inconverter=self.numpy_converter_in, ) def numpy_converter_out(self, value): """Convert array.array to numpy array""" if value.typecode == "b": dtype = np.int8 elif value.typecode == "f": dtype = np.float32 else: dtype = np.float64 return np.array(value, copy=False, dtype=dtype) def output_type_handler(self, cursor, metadata): """Set the type handler for the output data""" if metadata.type_code is oracledb.DB_TYPE_VECTOR: return cursor.var( metadata.type_code, arraysize=cursor.arraysize, outconverter=self.numpy_converter_out, ) async def check_tables(self): for k,v in TABLES.items(): try: if k.lower() == "lightrag_graph": await self.query("SELECT id FROM GRAPH_TABLE (lightrag_graph MATCH (a) COLUMNS (a.id)) fetch first row only") else: await self.query("SELECT 1 FROM {k}".format(k=k)) except Exception as e: logger.error(f"Failed to check table {k} in Oracle database") logger.error(f"Oracle database error: {e}") try: # print(v["ddl"]) await self.execute(v["ddl"]) logger.info(f"Created table {k} in Oracle database") except Exception as e: logger.error(f"Failed to create table {k} in Oracle database") logger.error(f"Oracle database error: {e}") logger.info(f"Finished check all tables in Oracle database") async def query(self,sql: str, multirows: bool = False) -> Union[dict, None]: async with self.pool.acquire() as connection: connection.inputtypehandler = self.input_type_handler connection.outputtypehandler = self.output_type_handler with connection.cursor() as cursor: try: await cursor.execute(sql) except Exception as e: logger.error(f"Oracle database error: {e}") print(sql) raise columns = [column[0].lower() for column in cursor.description] if multirows: rows = await cursor.fetchall() if rows: data = [dict(zip(columns, row)) for row in rows] else: data = [] else: row = await cursor.fetchone() if row: data = dict(zip(columns, row)) else: data = None return data async def execute(self,sql: str, data: list = None): # logger.info("go into OracleDB execute method") try: async with self.pool.acquire() as connection: connection.inputtypehandler = self.input_type_handler connection.outputtypehandler = self.output_type_handler with connection.cursor() as cursor: if data is None: await cursor.execute(sql) else: #print(data) #print(sql) await cursor.execute(sql,data) await connection.commit() except Exception as e: logger.error(f"Oracle database error: {e}") print(sql) print(data) raise @dataclass class OracleKVStorage(BaseKVStorage): # should pass db object to self.db def __post_init__(self): self._data = {} self._max_batch_size = self.global_config["embedding_batch_num"] ################ QUERY METHODS ################ async def get_by_id(self, id: str) -> Union[dict, None]: """根据 id 获取 doc_full 数据.""" SQL = SQL_TEMPLATES["get_by_id_"+self.namespace].format(workspace=self.db.workspace,id=id) #print("get_by_id:"+SQL) res = await self.db.query(SQL) if res: data = res #{"data":res} #print (data) return data else: return None # Query by id async def get_by_ids(self, ids: list[str], fields=None) -> Union[list[dict],None]: """根据 id 获取 doc_chunks 数据""" SQL = SQL_TEMPLATES["get_by_ids_"+self.namespace].format(workspace=self.db.workspace, ids=",".join([f"'{id}'" for id in ids])) #print("get_by_ids:"+SQL) res = await self.db.query(SQL,multirows=True) if res: data = res # [{"data":i} for i in res] #print(data) return data else: return None async def filter_keys(self, keys: list[str]) -> set[str]: """过滤掉重复内容""" SQL = SQL_TEMPLATES["filter_keys"].format(table_name=N_T[self.namespace], workspace=self.db.workspace, ids=",".join([f"'{k}'" for k in keys])) res = await self.db.query(SQL,multirows=True) data = None if res: exist_keys = [key["id"] for key in res] data = set([s for s in keys if s not in exist_keys]) else: exist_keys = [] data = set([s for s in keys if s not in exist_keys]) return data ################ INSERT METHODS ################ async def upsert(self, data: dict[str, dict]): left_data = {k: v for k, v in data.items() if k not in self._data} self._data.update(left_data) #print(self._data) #values = [] if self.namespace == "text_chunks": list_data = [ { "__id__": k, **{k1: v1 for k1, v1 in v.items()}, } for k, v in data.items() ] contents = [v["content"] for v in data.values()] batches = [ contents[i: i + self._max_batch_size] for i in range(0, len(contents), self._max_batch_size) ] embeddings_list = await asyncio.gather( *[self.embedding_func(batch) for batch in batches] ) embeddings = np.concatenate(embeddings_list) for i, d in enumerate(list_data): d["__vector__"] = embeddings[i] #print(list_data) for item in list_data: merge_sql = SQL_TEMPLATES["merge_chunk"].format( check_id=item["__id__"] ) values = [item["__id__"], item["content"], self.db.workspace, item["tokens"], item["chunk_order_index"], item["full_doc_id"], item["__vector__"]] #print(merge_sql) await self.db.execute(merge_sql, values) if self.namespace == "full_docs": for k, v in self._data.items(): #values.clear() merge_sql = SQL_TEMPLATES["merge_doc_full"].format( check_id=k, ) values = [k, self._data[k]["content"], self.db.workspace] #print(merge_sql) await self.db.execute(merge_sql, values) return left_data async def index_done_callback(self): if self.namespace in ["full_docs", "text_chunks"]: logger.info("full doc and chunk data had been saved into oracle db!") @dataclass class OracleVectorDBStorage(BaseVectorStorage): cosine_better_than_threshold: float = 0.2 def __post_init__(self): pass async def upsert(self, data: dict[str, dict]): """向向量数据库中插入数据""" pass async def index_done_callback(self): pass #################### query method ################ async def query(self, query: str, top_k=5) -> Union[dict, list[dict]]: """从向量数据库中查询数据""" embeddings = await self.embedding_func([query]) embedding = embeddings[0] # 转换精度 dtype = str(embedding.dtype).upper() dimension = embedding.shape[0] embedding_string = ', '.join(map(str, embedding.tolist())) SQL = SQL_TEMPLATES[self.namespace].format( embedding_string=embedding_string, dimension=dimension, dtype=dtype, workspace=self.db.workspace, top_k=top_k, better_than_threshold=self.cosine_better_than_threshold, ) # print(SQL) results = await self.db.query(SQL, multirows=True) #print("vector search result:",results) return results @dataclass class OracleGraphStorage(BaseGraphStorage): """基于Oracle的图存储模块""" # @staticmethod # def load_graph(file_name) -> nx.Graph: # """读取graphhml图文件""" # @staticmethod # def write_graph(graph: nx.Graph, file_name): # # """写入graphhml图文件""" # @staticmethod # def stable_largest_connected_component(graph: nx.Graph) -> nx.Graph: # """Refer to https://github.com/microsoft/graphrag/index/graph/utils/stable_lcc.py # Return the largest connected component of the graph, with nodes and edges sorted in a stable way. # 用于产生稳定的最大连通分量的模块,即相同的输入图==相同的输出lcc。 # """ # @staticmethod # def _stabilize_graph(graph: nx.Graph) -> nx.Graph: # """Refer to https://github.com/microsoft/graphrag/index/graph/utils/stable_lcc.py # Ensure an undirected graph with the same relationships will always be read the same way. # 确保具有相同关系的无向图始终以相同的方式读取。 # """ def __post_init__(self): """从graphml文件加载图""" self._max_batch_size = self.global_config["embedding_batch_num"] #################### insert method ################ async def upsert_node(self, node_id: str, node_data: dict[str, str]): """插入或更新节点""" #print("go into upsert node method") entity_name = node_id entity_type = node_data["entity_type"] description = node_data["description"] source_id = node_data["source_id"] content = entity_name+description contents = [content] batches = [ contents[i: i + self._max_batch_size] for i in range(0, len(contents), self._max_batch_size) ] embeddings_list = await asyncio.gather( *[self.embedding_func(batch) for batch in batches] ) embeddings = np.concatenate(embeddings_list) content_vector = embeddings[0] merge_sql = SQL_TEMPLATES["merge_node"].format( workspace=self.db.workspace,name=entity_name, source_chunk_id=source_id ) #print(merge_sql) await self.db.execute(merge_sql, [self.db.workspace,entity_name,entity_type,description,source_id,content,content_vector]) #self._graph.add_node(node_id, **node_data) async def upsert_edge( self, source_node_id: str, target_node_id: str, edge_data: dict[str, str] ): """插入或更新边""" #print("go into upsert edge method") source_name = source_node_id target_name = target_node_id weight = edge_data["weight"] keywords = edge_data["keywords"] description = edge_data["description"] source_chunk_id = edge_data["source_id"] content = keywords+source_name+target_name+description contents = [content] batches = [ contents[i: i + self._max_batch_size] for i in range(0, len(contents), self._max_batch_size) ] embeddings_list = await asyncio.gather( *[self.embedding_func(batch) for batch in batches] ) embeddings = np.concatenate(embeddings_list) content_vector = embeddings[0] merge_sql = SQL_TEMPLATES["merge_edge"].format( workspace=self.db.workspace,source_name=source_name, target_name=target_name, source_chunk_id=source_chunk_id ) #print(merge_sql) await self.db.execute(merge_sql, [self.db.workspace,source_name,target_name,weight,keywords,description,source_chunk_id,content,content_vector]) #self._graph.add_edge(source_node_id, target_node_id, **edge_data) async def embed_nodes(self, algorithm: str) -> tuple[np.ndarray, list[str]]: """为节点生成向量""" if algorithm not in self._node_embed_algorithms: raise ValueError(f"Node embedding algorithm {algorithm} not supported") return await self._node_embed_algorithms[algorithm]() async def _node2vec_embed(self): """为节点生成向量""" from graspologic import embed embeddings, nodes = embed.node2vec_embed( self._graph, **self.config["node2vec_params"], ) nodes_ids = [self._graph.nodes[node_id]["id"] for node_id in nodes] return embeddings, nodes_ids async def index_done_callback(self): """写入graphhml图文件""" logger.info("Node and edge data had been saved into oracle db already, so nothing to do here!") #################### query method ################ async def has_node(self, node_id: str) -> bool: """根据节点id检查节点是否存在""" SQL = SQL_TEMPLATES["has_node"].format(workspace=self.db.workspace, node_id=node_id) # print(SQL) #print(self.db.workspace, node_id) res = await self.db.query(SQL) if res: #print("Node exist!",res) return True else: #print("Node not exist!") return False async def has_edge(self, source_node_id: str, target_node_id: str) -> bool: """根据源和目标节点id检查边是否存在""" SQL = SQL_TEMPLATES["has_edge"].format(workspace=self.db.workspace, source_node_id=source_node_id, target_node_id=target_node_id) # print(SQL) res = await self.db.query(SQL) if res: #print("Edge exist!",res) return True else: #print("Edge not exist!") return False async def node_degree(self, node_id: str) -> int: """根据节点id获取节点的度""" SQL = SQL_TEMPLATES["node_degree"].format(workspace=self.db.workspace, node_id=node_id) # print(SQL) res = await self.db.query(SQL) if res: #print("Node degree",res["degree"]) return res["degree"] else: #print("Edge not exist!") return 0 async def edge_degree(self, src_id: str, tgt_id: str) -> int: """根据源和目标节点id获取边的度""" degree = await self.node_degree(src_id) + await self.node_degree(tgt_id) #print("Edge degree",degree) return degree async def get_node(self, node_id: str) -> Union[dict, None]: """根据节点id获取节点数据""" SQL = SQL_TEMPLATES["get_node"].format(workspace=self.db.workspace, node_id=node_id) # print(self.db.workspace, node_id) # print(SQL) res = await self.db.query(SQL) if res: #print("Get node!",self.db.workspace, node_id,res) return res else: #print("Can't get node!",self.db.workspace, node_id) return None async def get_edge( self, source_node_id: str, target_node_id: str ) -> Union[dict, None]: """根据源和目标节点id获取边""" SQL = SQL_TEMPLATES["get_edge"].format(workspace=self.db.workspace, source_node_id=source_node_id, target_node_id=target_node_id) res = await self.db.query(SQL) if res: #print("Get edge!",self.db.workspace, source_node_id, target_node_id,res[0]) return res else: #print("Edge not exist!",self.db.workspace, source_node_id, target_node_id) return None async def get_node_edges(self, source_node_id: str): """根据节点id获取节点的所有边""" if await self.has_node(source_node_id): SQL = SQL_TEMPLATES["get_node_edges"].format(workspace=self.db.workspace, source_node_id=source_node_id) res = await self.db.query(sql=SQL, multirows=True) if res: data = [(i["source_name"],i["target_name"]) for i in res] #print("Get node edge!",self.db.workspace, source_node_id,data) return data else: #print("Node Edge not exist!",self.db.workspace, source_node_id) return [] #################### INSERT method ################ async def upsert_node(self, node_id: str, node_data: dict[str, str]): """插入或更新节点""" #print("go into upsert node method") entity_name = node_id entity_type = node_data["entity_type"] description = node_data["description"] source_id = node_data["source_id"] content = entity_name+description contents = [content] batches = [ contents[i: i + self._max_batch_size] for i in range(0, len(contents), self._max_batch_size) ] embeddings_list = await asyncio.gather( *[self.embedding_func(batch) for batch in batches] ) embeddings = np.concatenate(embeddings_list) content_vector = embeddings[0] merge_sql = SQL_TEMPLATES["merge_node"].format( workspace=self.db.workspace,name=entity_name, source_chunk_id=source_id ) #print(merge_sql) await self.db.execute(merge_sql, [self.db.workspace,entity_name,entity_type,description,source_id,content,content_vector]) #self._graph.add_node(node_id, **node_data) async def upsert_edge( self, source_node_id: str, target_node_id: str, edge_data: dict[str, str] ): """插入或更新边""" #print("go into upsert edge method") source_name = source_node_id target_name = target_node_id weight = edge_data["weight"] keywords = edge_data["keywords"] description = edge_data["description"] source_chunk_id = edge_data["source_id"] content = keywords+source_name+target_name+description contents = [content] batches = [ contents[i: i + self._max_batch_size] for i in range(0, len(contents), self._max_batch_size) ] embeddings_list = await asyncio.gather( *[self.embedding_func(batch) for batch in batches] ) embeddings = np.concatenate(embeddings_list) content_vector = embeddings[0] merge_sql = SQL_TEMPLATES["merge_edge"].format( workspace=self.db.workspace,source_name=source_name, target_name=target_name, source_chunk_id=source_chunk_id ) #print(merge_sql) await self.db.execute(merge_sql, [self.db.workspace,source_name,target_name,weight,keywords,description,source_chunk_id,content,content_vector]) #self._graph.add_edge(source_node_id, target_node_id, **edge_data) async def embed_nodes(self, algorithm: str) -> tuple[np.ndarray, list[str]]: """为节点生成向量""" if algorithm not in self._node_embed_algorithms: raise ValueError(f"Node embedding algorithm {algorithm} not supported") return await self._node_embed_algorithms[algorithm]() async def _node2vec_embed(self): """为节点生成向量""" from graspologic import embed embeddings, nodes = embed.node2vec_embed( self._graph, **self.config["node2vec_params"], ) nodes_ids = [self._graph.nodes[node_id]["id"] for node_id in nodes] return embeddings, nodes_ids N_T = { "full_docs": "LIGHTRAG_DOC_FULL", "text_chunks": "LIGHTRAG_DOC_CHUNKS", "chunks": "LIGHTRAG_DOC_CHUNKS", "entities": "LIGHTRAG_GRAPH_NODES", "relationships": "LIGHTRAG_GRAPH_EDGES" } TABLES = { "LIGHTRAG_DOC_FULL": {"ddl":"""CREATE TABLE LIGHTRAG_DOC_FULL ( id varchar(256)PRIMARY KEY, workspace varchar(1024), doc_name varchar(1024), content CLOB, meta JSON )"""}, "LIGHTRAG_DOC_CHUNKS": {"ddl":"""CREATE TABLE LIGHTRAG_DOC_CHUNKS ( id varchar(256) PRIMARY KEY, workspace varchar(1024), full_doc_id varchar(256), chunk_order_index NUMBER, tokens NUMBER, content CLOB, content_vector VECTOR )"""}, "LIGHTRAG_GRAPH_NODES": {"ddl":"""CREATE TABLE LIGHTRAG_GRAPH_NODES ( id NUMBER GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY, workspace varchar(1024), name varchar(2048), entity_type varchar(1024), description CLOB, source_chunk_id varchar(256), content CLOB, content_vector VECTOR )"""}, "LIGHTRAG_GRAPH_EDGES": {"ddl":"""CREATE TABLE LIGHTRAG_GRAPH_EDGES ( id NUMBER GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY, workspace varchar(1024), source_name varchar(2048), target_name varchar(2048), weight NUMBER, keywords CLOB, description CLOB, source_chunk_id varchar(256), content CLOB, content_vector VECTOR )"""}, "LIGHTRAG_LLM_CACHE": {"ddl":"""CREATE TABLE LIGHTRAG_LLM_CACHE ( id varchar(256) PRIMARY KEY, return clob, model varchar(1024) )"""}, "LIGHTRAG_GRAPH": {"ddl":"""CREATE OR REPLACE PROPERTY GRAPH lightrag_graph VERTEX TABLES ( lightrag_graph_nodes KEY (id) LABEL entity PROPERTIES (id,workspace,name) -- ,entity_type,description,source_chunk_id) ) EDGE TABLES ( lightrag_graph_edges KEY (id) SOURCE KEY (source_name) REFERENCES lightrag_graph_nodes(name) DESTINATION KEY (target_name) REFERENCES lightrag_graph_nodes(name) LABEL has_relation PROPERTIES (id,workspace,source_name,target_name) -- ,weight, keywords,description,source_chunk_id) ) OPTIONS(ALLOW MIXED PROPERTY TYPES)"""}, } SQL_TEMPLATES = { # SQL for KVStorage "get_by_id_full_docs": "select ID,NVL(content,'') as content from LIGHTRAG_DOC_FULL where workspace='{workspace}' and ID='{id}'", "get_by_id_text_chunks": "select ID,TOKENS,NVL(content,'') as content,CHUNK_ORDER_INDEX,FULL_DOC_ID from LIGHTRAG_DOC_CHUNKS where workspace='{workspace}' and ID='{id}'", "get_by_ids_full_docs": "select ID,NVL(content,'') as content from LIGHTRAG_DOC_FULL where workspace='{workspace}' and ID in ({ids})", "get_by_ids_text_chunks": "select ID,TOKENS,NVL(content,'') as content,CHUNK_ORDER_INDEX,FULL_DOC_ID from LIGHTRAG_DOC_CHUNKS where workspace='{workspace}' and ID in ({ids})", "filter_keys": "select id from {table_name} where workspace='{workspace}' and id in ({ids})", "merge_doc_full": """ MERGE INTO LIGHTRAG_DOC_FULL a USING DUAL ON (a.id = '{check_id}') WHEN NOT MATCHED THEN INSERT(id,content,workspace) values(:1,:2,:3) """, "merge_chunk": """MERGE INTO LIGHTRAG_DOC_CHUNKS a USING DUAL ON (a.id = '{check_id}') WHEN NOT MATCHED THEN INSERT(id,content,workspace,tokens,chunk_order_index,full_doc_id,content_vector) values (:1,:2,:3,:4,:5,:6,:7) """, # SQL for VectorStorage "entities": """SELECT name as entity_name FROM (SELECT id,name,VECTOR_DISTANCE(content_vector,vector('[{embedding_string}]',{dimension},{dtype}),COSINE) as distance FROM LIGHTRAG_GRAPH_NODES WHERE workspace='{workspace}') WHERE distance>{better_than_threshold} ORDER BY distance ASC FETCH FIRST {top_k} ROWS ONLY""", "relationships": """SELECT source_name as src_id, target_name as tgt_id FROM (SELECT id,source_name,target_name,VECTOR_DISTANCE(content_vector,vector('[{embedding_string}]',{dimension},{dtype}),COSINE) as distance FROM LIGHTRAG_GRAPH_EDGES WHERE workspace='{workspace}') WHERE distance>{better_than_threshold} ORDER BY distance ASC FETCH FIRST {top_k} ROWS ONLY""", "chunks": """SELECT id FROM (SELECT id,VECTOR_DISTANCE(content_vector,vector('[{embedding_string}]',{dimension},{dtype}),COSINE) as distance FROM LIGHTRAG_DOC_CHUNKS WHERE workspace='{workspace}') WHERE distance>{better_than_threshold} ORDER BY distance ASC FETCH FIRST {top_k} ROWS ONLY""", # SQL for GraphStorage "has_node": """SELECT * FROM GRAPH_TABLE (lightrag_graph MATCH (a) WHERE a.workspace='{workspace}' AND a.name='{node_id}' COLUMNS (a.name))""", "has_edge": """SELECT * FROM GRAPH_TABLE (lightrag_graph MATCH (a) -[e]-> (b) WHERE e.workspace='{workspace}' and a.workspace='{workspace}' and b.workspace='{workspace}' AND a.name='{source_node_id}' AND b.name='{target_node_id}' COLUMNS (e.source_name,e.target_name) )""", "node_degree": """SELECT count(1) as degree FROM GRAPH_TABLE (lightrag_graph MATCH (a)-[e]->(b) WHERE a.workspace='{workspace}' and a.workspace='{workspace}' and b.workspace='{workspace}' AND a.name='{node_id}' or b.name = '{node_id}' COLUMNS (a.name))""", "get_node": """SELECT t1.name,t2.entity_type,t2.source_chunk_id as source_id,NVL(t2.description,'') AS description FROM GRAPH_TABLE (lightrag_graph MATCH (a) WHERE a.workspace='{workspace}' AND a.name='{node_id}' COLUMNS (a.name) ) t1 JOIN LIGHTRAG_GRAPH_NODES t2 on t1.name=t2.name WHERE t2.workspace='{workspace}'""", "get_edge": """SELECT t1.source_id,t2.weight,t2.source_chunk_id as source_id,t2.keywords, NVL(t2.description,'') AS description,NVL(t2.KEYWORDS,'') AS keywords FROM GRAPH_TABLE (lightrag_graph MATCH (a)-[e]->(b) WHERE e.workspace='{workspace}' and a.workspace='{workspace}' and b.workspace='{workspace}' AND a.name='{source_node_id}' and b.name = '{target_node_id}' COLUMNS (e.id,a.name as source_id) ) t1 JOIN LIGHTRAG_GRAPH_EDGES t2 on t1.id=t2.id""", "get_node_edges": """SELECT source_name,target_name FROM GRAPH_TABLE (lightrag_graph MATCH (a)-[e]->(b) WHERE e.workspace='{workspace}' and a.workspace='{workspace}' and b.workspace='{workspace}' AND a.name='{source_node_id}' COLUMNS (a.name as source_name,b.name as target_name))""", "merge_node": """MERGE INTO LIGHTRAG_GRAPH_NODES a USING DUAL ON (a.workspace = '{workspace}' and a.name='{name}' and a.source_chunk_id='{source_chunk_id}') WHEN NOT MATCHED THEN INSERT(workspace,name,entity_type,description,source_chunk_id,content,content_vector) values (:1,:2,:3,:4,:5,:6,:7) """, "merge_edge": """MERGE INTO LIGHTRAG_GRAPH_EDGES a USING DUAL ON (a.workspace = '{workspace}' and a.source_name='{source_name}' and a.target_name='{target_name}' and a.source_chunk_id='{source_chunk_id}') WHEN NOT MATCHED THEN INSERT(workspace,source_name,target_name,weight,keywords,description,source_chunk_id,content,content_vector) values (:1,:2,:3,:4,:5,:6,:7,:8,:9) """ }