from __future__ import annotations import asyncio import configparser import os import csv import warnings from dataclasses import asdict, dataclass, field from datetime import datetime from functools import partial from typing import Any, AsyncIterator, Callable, Iterator, cast, final, Literal import pandas as pd from lightrag.kg import ( STORAGE_ENV_REQUIREMENTS, STORAGES, verify_storage_implementation, ) from .base import ( BaseGraphStorage, BaseKVStorage, BaseVectorStorage, DocProcessingStatus, DocStatus, DocStatusStorage, QueryParam, StorageNameSpace, StoragesStatus, ) from .namespace import NameSpace, make_namespace from .operate import ( chunking_by_token_size, extract_entities, kg_query, mix_kg_vector_query, naive_query, query_with_keywords, ) from .prompt import GRAPH_FIELD_SEP, PROMPTS from .utils import ( EmbeddingFunc, always_get_an_event_loop, compute_mdhash_id, convert_response_to_json, encode_string_by_tiktoken, lazy_external_import, limit_async_func_call, get_content_summary, clean_text, check_storage_env_vars, logger, ) from .types import KnowledgeGraph from dotenv import load_dotenv # Load environment variables load_dotenv(override=True) # TODO: TO REMOVE @Yannick config = configparser.ConfigParser() config.read("config.ini", "utf-8") @final @dataclass class LightRAG: """LightRAG: Simple and Fast Retrieval-Augmented Generation.""" # Directory # --- working_dir: str = field( default=f"./lightrag_cache_{datetime.now().strftime('%Y-%m-%d-%H:%M:%S')}" ) """Directory where cache and temporary files are stored.""" # Storage # --- kv_storage: str = field(default="JsonKVStorage") """Storage backend for key-value data.""" vector_storage: str = field(default="NanoVectorDBStorage") """Storage backend for vector embeddings.""" graph_storage: str = field(default="NetworkXStorage") """Storage backend for knowledge graphs.""" doc_status_storage: str = field(default="JsonDocStatusStorage") """Storage type for tracking document processing statuses.""" # Logging (Deprecated, use setup_logger in utils.py instead) # --- log_level: int | None = field(default=None) log_file_path: str | None = field(default=None) # Entity extraction # --- entity_extract_max_gleaning: int = field(default=1) """Maximum number of entity extraction attempts for ambiguous content.""" entity_summary_to_max_tokens: int = field( default=int(os.getenv("MAX_TOKEN_SUMMARY", 500)) ) # Text chunking # --- chunk_token_size: int = field(default=int(os.getenv("CHUNK_SIZE", 1200))) """Maximum number of tokens per text chunk when splitting documents.""" chunk_overlap_token_size: int = field( default=int(os.getenv("CHUNK_OVERLAP_SIZE", 100)) ) """Number of overlapping tokens between consecutive text chunks to preserve context.""" tiktoken_model_name: str = field(default="gpt-4o-mini") """Model name used for tokenization when chunking text.""" """Maximum number of tokens used for summarizing extracted entities.""" chunking_func: Callable[ [ str, str | None, bool, int, int, str, ], list[dict[str, Any]], ] = field(default_factory=lambda: chunking_by_token_size) """ Custom chunking function for splitting text into chunks before processing. The function should take the following parameters: - `content`: The text to be split into chunks. - `split_by_character`: The character to split the text on. If None, the text is split into chunks of `chunk_token_size` tokens. - `split_by_character_only`: If True, the text is split only on the specified character. - `chunk_token_size`: The maximum number of tokens per chunk. - `chunk_overlap_token_size`: The number of overlapping tokens between consecutive chunks. - `tiktoken_model_name`: The name of the tiktoken model to use for tokenization. The function should return a list of dictionaries, where each dictionary contains the following keys: - `tokens`: The number of tokens in the chunk. - `content`: The text content of the chunk. Defaults to `chunking_by_token_size` if not specified. """ # Node embedding # --- node_embedding_algorithm: str = field(default="node2vec") """Algorithm used for node embedding in knowledge graphs.""" node2vec_params: dict[str, int] = field( default_factory=lambda: { "dimensions": 1536, "num_walks": 10, "walk_length": 40, "window_size": 2, "iterations": 3, "random_seed": 3, } ) """Configuration for the node2vec embedding algorithm: - dimensions: Number of dimensions for embeddings. - num_walks: Number of random walks per node. - walk_length: Number of steps per random walk. - window_size: Context window size for training. - iterations: Number of iterations for training. - random_seed: Seed value for reproducibility. """ # Embedding # --- embedding_func: EmbeddingFunc | None = field(default=None) """Function for computing text embeddings. Must be set before use.""" embedding_batch_num: int = field(default=32) """Batch size for embedding computations.""" embedding_func_max_async: int = field(default=16) """Maximum number of concurrent embedding function calls.""" embedding_cache_config: dict[str, Any] = field( default_factory=lambda: { "enabled": False, "similarity_threshold": 0.95, "use_llm_check": False, } ) """Configuration for embedding cache. - enabled: If True, enables caching to avoid redundant computations. - similarity_threshold: Minimum similarity score to use cached embeddings. - use_llm_check: If True, validates cached embeddings using an LLM. """ # LLM Configuration # --- llm_model_func: Callable[..., object] | None = field(default=None) """Function for interacting with the large language model (LLM). Must be set before use.""" llm_model_name: str = field(default="gpt-4o-mini") """Name of the LLM model used for generating responses.""" llm_model_max_token_size: int = field(default=int(os.getenv("MAX_TOKENS", 32768))) """Maximum number of tokens allowed per LLM response.""" llm_model_max_async: int = field(default=int(os.getenv("MAX_ASYNC", 4))) """Maximum number of concurrent LLM calls.""" llm_model_kwargs: dict[str, Any] = field(default_factory=dict) """Additional keyword arguments passed to the LLM model function.""" # Storage # --- vector_db_storage_cls_kwargs: dict[str, Any] = field(default_factory=dict) """Additional parameters for vector database storage.""" namespace_prefix: str = field(default="") """Prefix for namespacing stored data across different environments.""" enable_llm_cache: bool = field(default=True) """Enables caching for LLM responses to avoid redundant computations.""" enable_llm_cache_for_entity_extract: bool = field(default=True) """If True, enables caching for entity extraction steps to reduce LLM costs.""" # Extensions # --- max_parallel_insert: int = field(default=int(os.getenv("MAX_PARALLEL_INSERT", 2))) """Maximum number of parallel insert operations.""" addon_params: dict[str, Any] = field( default_factory=lambda: { "language": os.getenv("SUMMARY_LANGUAGE", PROMPTS["DEFAULT_LANGUAGE"]) } ) # Storages Management # --- auto_manage_storages_states: bool = field(default=True) """If True, lightrag will automatically calls initialize_storages and finalize_storages at the appropriate times.""" # Storages Management # --- convert_response_to_json_func: Callable[[str], dict[str, Any]] = field( default_factory=lambda: convert_response_to_json ) """ Custom function for converting LLM responses to JSON format. The default function is :func:`.utils.convert_response_to_json`. """ cosine_better_than_threshold: float = field( default=float(os.getenv("COSINE_THRESHOLD", 0.2)) ) _storages_status: StoragesStatus = field(default=StoragesStatus.NOT_CREATED) def __post_init__(self): from lightrag.kg.shared_storage import ( initialize_share_data, ) # Handle deprecated parameters if self.log_level is not None: warnings.warn( "WARNING: log_level parameter is deprecated, use setup_logger in utils.py instead", UserWarning, stacklevel=2, ) if self.log_file_path is not None: warnings.warn( "WARNING: log_file_path parameter is deprecated, use setup_logger in utils.py instead", UserWarning, stacklevel=2, ) # Remove these attributes to prevent their use if hasattr(self, "log_level"): delattr(self, "log_level") if hasattr(self, "log_file_path"): delattr(self, "log_file_path") initialize_share_data() if not os.path.exists(self.working_dir): logger.info(f"Creating working directory {self.working_dir}") os.makedirs(self.working_dir) # Verify storage implementation compatibility and environment variables storage_configs = [ ("KV_STORAGE", self.kv_storage), ("VECTOR_STORAGE", self.vector_storage), ("GRAPH_STORAGE", self.graph_storage), ("DOC_STATUS_STORAGE", self.doc_status_storage), ] for storage_type, storage_name in storage_configs: # Verify storage implementation compatibility verify_storage_implementation(storage_type, storage_name) # Check environment variables check_storage_env_vars(storage_name) # Ensure vector_db_storage_cls_kwargs has required fields self.vector_db_storage_cls_kwargs = { "cosine_better_than_threshold": self.cosine_better_than_threshold, **self.vector_db_storage_cls_kwargs, } # Show config global_config = asdict(self) _print_config = ",\n ".join([f"{k} = {v}" for k, v in global_config.items()]) logger.debug(f"LightRAG init with param:\n {_print_config}\n") # Init LLM self.embedding_func = limit_async_func_call(self.embedding_func_max_async)( # type: ignore self.embedding_func ) # Initialize all storages self.key_string_value_json_storage_cls: type[BaseKVStorage] = ( self._get_storage_class(self.kv_storage) ) # type: ignore self.vector_db_storage_cls: type[BaseVectorStorage] = self._get_storage_class( self.vector_storage ) # type: ignore self.graph_storage_cls: type[BaseGraphStorage] = self._get_storage_class( self.graph_storage ) # type: ignore self.key_string_value_json_storage_cls = partial( # type: ignore self.key_string_value_json_storage_cls, global_config=global_config ) self.vector_db_storage_cls = partial( # type: ignore self.vector_db_storage_cls, global_config=global_config ) self.graph_storage_cls = partial( # type: ignore self.graph_storage_cls, global_config=global_config ) # Initialize document status storage self.doc_status_storage_cls = self._get_storage_class(self.doc_status_storage) self.llm_response_cache: BaseKVStorage = self.key_string_value_json_storage_cls( # type: ignore namespace=make_namespace( self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE ), global_config=asdict( self ), # Add global_config to ensure cache works properly embedding_func=self.embedding_func, ) self.full_docs: BaseKVStorage = self.key_string_value_json_storage_cls( # type: ignore namespace=make_namespace( self.namespace_prefix, NameSpace.KV_STORE_FULL_DOCS ), embedding_func=self.embedding_func, ) self.text_chunks: BaseKVStorage = self.key_string_value_json_storage_cls( # type: ignore namespace=make_namespace( self.namespace_prefix, NameSpace.KV_STORE_TEXT_CHUNKS ), embedding_func=self.embedding_func, ) self.chunk_entity_relation_graph: BaseGraphStorage = self.graph_storage_cls( # type: ignore namespace=make_namespace( self.namespace_prefix, NameSpace.GRAPH_STORE_CHUNK_ENTITY_RELATION ), embedding_func=self.embedding_func, ) self.entities_vdb: BaseVectorStorage = self.vector_db_storage_cls( # type: ignore namespace=make_namespace( self.namespace_prefix, NameSpace.VECTOR_STORE_ENTITIES ), embedding_func=self.embedding_func, meta_fields={"entity_name", "source_id", "content"}, ) self.relationships_vdb: BaseVectorStorage = self.vector_db_storage_cls( # type: ignore namespace=make_namespace( self.namespace_prefix, NameSpace.VECTOR_STORE_RELATIONSHIPS ), embedding_func=self.embedding_func, meta_fields={"src_id", "tgt_id", "source_id", "content"}, ) self.chunks_vdb: BaseVectorStorage = self.vector_db_storage_cls( # type: ignore namespace=make_namespace( self.namespace_prefix, NameSpace.VECTOR_STORE_CHUNKS ), embedding_func=self.embedding_func, ) # Initialize document status storage self.doc_status: DocStatusStorage = self.doc_status_storage_cls( namespace=make_namespace(self.namespace_prefix, NameSpace.DOC_STATUS), global_config=global_config, embedding_func=None, ) # Directly use llm_response_cache, don't create a new object hashing_kv = self.llm_response_cache self.llm_model_func = limit_async_func_call(self.llm_model_max_async)( partial( self.llm_model_func, # type: ignore hashing_kv=hashing_kv, **self.llm_model_kwargs, ) ) self._storages_status = StoragesStatus.CREATED if self.auto_manage_storages_states: self._run_async_safely(self.initialize_storages, "Storage Initialization") def __del__(self): if self.auto_manage_storages_states: self._run_async_safely(self.finalize_storages, "Storage Finalization") def _run_async_safely(self, async_func, action_name=""): """Safely execute an async function, avoiding event loop conflicts.""" try: loop = always_get_an_event_loop() if loop.is_running(): task = loop.create_task(async_func()) task.add_done_callback( lambda t: logger.info(f"{action_name} completed!") ) else: loop.run_until_complete(async_func()) except RuntimeError: logger.warning( f"No running event loop, creating a new loop for {action_name}." ) loop = asyncio.new_event_loop() loop.run_until_complete(async_func()) loop.close() async def initialize_storages(self): """Asynchronously initialize the storages""" if self._storages_status == StoragesStatus.CREATED: tasks = [] for storage in ( self.full_docs, self.text_chunks, self.entities_vdb, self.relationships_vdb, self.chunks_vdb, self.chunk_entity_relation_graph, self.llm_response_cache, self.doc_status, ): if storage: tasks.append(storage.initialize()) await asyncio.gather(*tasks) self._storages_status = StoragesStatus.INITIALIZED logger.debug("Initialized Storages") async def finalize_storages(self): """Asynchronously finalize the storages""" if self._storages_status == StoragesStatus.INITIALIZED: tasks = [] for storage in ( self.full_docs, self.text_chunks, self.entities_vdb, self.relationships_vdb, self.chunks_vdb, self.chunk_entity_relation_graph, self.llm_response_cache, self.doc_status, ): if storage: tasks.append(storage.finalize()) await asyncio.gather(*tasks) self._storages_status = StoragesStatus.FINALIZED logger.debug("Finalized Storages") async def get_graph_labels(self): text = await self.chunk_entity_relation_graph.get_all_labels() return text async def get_knowledge_graph( self, node_label: str, max_depth: int = 3, min_degree: int = 0, inclusive: bool = False, ) -> KnowledgeGraph: """Get knowledge graph for a given label Args: node_label (str): Label to get knowledge graph for max_depth (int): Maximum depth of graph min_degree (int, optional): Minimum degree of nodes to include. Defaults to 0. inclusive (bool, optional): Whether to use inclusive search mode. Defaults to False. Returns: KnowledgeGraph: Knowledge graph containing nodes and edges """ # get params supported by get_knowledge_graph of specified storage import inspect storage_params = inspect.signature( self.chunk_entity_relation_graph.get_knowledge_graph ).parameters kwargs = {"node_label": node_label, "max_depth": max_depth} if "min_degree" in storage_params and min_degree > 0: kwargs["min_degree"] = min_degree if "inclusive" in storage_params: kwargs["inclusive"] = inclusive return await self.chunk_entity_relation_graph.get_knowledge_graph(**kwargs) def _get_storage_class(self, storage_name: str) -> Callable[..., Any]: import_path = STORAGES[storage_name] storage_class = lazy_external_import(import_path, storage_name) return storage_class def insert( self, input: str | list[str], split_by_character: str | None = None, split_by_character_only: bool = False, ids: str | list[str] | None = None, ) -> None: """Sync Insert documents with checkpoint support Args: input: Single document string or list of document strings split_by_character: if split_by_character is not None, split the string by character, if chunk longer than chunk_token_size, it will be split again by token size. split_by_character_only: if split_by_character_only is True, split the string by character only, when split_by_character is None, this parameter is ignored. ids: single string of the document ID or list of unique document IDs, if not provided, MD5 hash IDs will be generated """ loop = always_get_an_event_loop() loop.run_until_complete( self.ainsert(input, split_by_character, split_by_character_only, ids) ) async def ainsert( self, input: str | list[str], split_by_character: str | None = None, split_by_character_only: bool = False, ids: str | list[str] | None = None, ) -> None: """Async Insert documents with checkpoint support Args: input: Single document string or list of document strings split_by_character: if split_by_character is not None, split the string by character, if chunk longer than chunk_token_size, it will be split again by token size. split_by_character_only: if split_by_character_only is True, split the string by character only, when split_by_character is None, this parameter is ignored. ids: list of unique document IDs, if not provided, MD5 hash IDs will be generated """ await self.apipeline_enqueue_documents(input, ids) await self.apipeline_process_enqueue_documents( split_by_character, split_by_character_only ) # TODO: deprecated, use insert instead def insert_custom_chunks( self, full_text: str, text_chunks: list[str], doc_id: str | list[str] | None = None, ) -> None: loop = always_get_an_event_loop() loop.run_until_complete( self.ainsert_custom_chunks(full_text, text_chunks, doc_id) ) # TODO: deprecated, use ainsert instead async def ainsert_custom_chunks( self, full_text: str, text_chunks: list[str], doc_id: str | None = None ) -> None: update_storage = False try: # Clean input texts full_text = clean_text(full_text) text_chunks = [clean_text(chunk) for chunk in text_chunks] # Process cleaned texts if doc_id is None: doc_key = compute_mdhash_id(full_text, prefix="doc-") else: doc_key = doc_id new_docs = {doc_key: {"content": full_text}} _add_doc_keys = await self.full_docs.filter_keys({doc_key}) new_docs = {k: v for k, v in new_docs.items() if k in _add_doc_keys} if not len(new_docs): logger.warning("This document is already in the storage.") return update_storage = True logger.info(f"Inserting {len(new_docs)} docs") inserting_chunks: dict[str, Any] = {} for chunk_text in text_chunks: chunk_key = compute_mdhash_id(chunk_text, prefix="chunk-") inserting_chunks[chunk_key] = { "content": chunk_text, "full_doc_id": doc_key, } doc_ids = set(inserting_chunks.keys()) add_chunk_keys = await self.text_chunks.filter_keys(doc_ids) inserting_chunks = { k: v for k, v in inserting_chunks.items() if k in add_chunk_keys } if not len(inserting_chunks): logger.warning("All chunks are already in the storage.") return tasks = [ self.chunks_vdb.upsert(inserting_chunks), self._process_entity_relation_graph(inserting_chunks), self.full_docs.upsert(new_docs), self.text_chunks.upsert(inserting_chunks), ] await asyncio.gather(*tasks) finally: if update_storage: await self._insert_done() async def apipeline_enqueue_documents( self, input: str | list[str], ids: list[str] | None = None ) -> None: """ Pipeline for Processing Documents 1. Validate ids if provided or generate MD5 hash IDs 2. Remove duplicate contents 3. Generate document initial status 4. Filter out already processed documents 5. Enqueue document in status """ if isinstance(input, str): input = [input] if isinstance(ids, str): ids = [ids] # 1. Validate ids if provided or generate MD5 hash IDs if ids is not None: # Check if the number of IDs matches the number of documents if len(ids) != len(input): raise ValueError("Number of IDs must match the number of documents") # Check if IDs are unique if len(ids) != len(set(ids)): raise ValueError("IDs must be unique") # Generate contents dict of IDs provided by user and documents contents = {id_: doc for id_, doc in zip(ids, input)} else: # Clean input text and remove duplicates input = list(set(clean_text(doc) for doc in input)) # Generate contents dict of MD5 hash IDs and documents contents = {compute_mdhash_id(doc, prefix="doc-"): doc for doc in input} # 2. Remove duplicate contents unique_contents = { id_: content for content, id_ in { content: id_ for id_, content in contents.items() }.items() } # 3. Generate document initial status new_docs: dict[str, Any] = { id_: { "content": content, "content_summary": get_content_summary(content), "content_length": len(content), "status": DocStatus.PENDING, "created_at": datetime.now().isoformat(), "updated_at": datetime.now().isoformat(), } for id_, content in unique_contents.items() } # 4. Filter out already processed documents # Get docs ids all_new_doc_ids = set(new_docs.keys()) # Exclude IDs of documents that are already in progress unique_new_doc_ids = await self.doc_status.filter_keys(all_new_doc_ids) # Log ignored document IDs ignored_ids = [ doc_id for doc_id in unique_new_doc_ids if doc_id not in new_docs ] if ignored_ids: logger.warning( f"Ignoring {len(ignored_ids)} document IDs not found in new_docs" ) for doc_id in ignored_ids: logger.warning(f"Ignored document ID: {doc_id}") # Filter new_docs to only include documents with unique IDs new_docs = { doc_id: new_docs[doc_id] for doc_id in unique_new_doc_ids if doc_id in new_docs } if not new_docs: logger.info("No new unique documents were found.") return # 5. Store status document await self.doc_status.upsert(new_docs) logger.info(f"Stored {len(new_docs)} new unique documents") async def apipeline_process_enqueue_documents( self, split_by_character: str | None = None, split_by_character_only: bool = False, ) -> None: """ Process pending documents by splitting them into chunks, processing each chunk for entity and relation extraction, and updating the document status. 1. Get all pending, failed, and abnormally terminated processing documents. 2. Split document content into chunks 3. Process each chunk for entity and relation extraction 4. Update the document status """ from lightrag.kg.shared_storage import ( get_namespace_data, get_pipeline_status_lock, ) # Get pipeline status shared data and lock pipeline_status = await get_namespace_data("pipeline_status") pipeline_status_lock = get_pipeline_status_lock() # Check if another process is already processing the queue async with pipeline_status_lock: # Ensure only one worker is processing documents if not pipeline_status.get("busy", False): processing_docs, failed_docs, pending_docs = await asyncio.gather( self.doc_status.get_docs_by_status(DocStatus.PROCESSING), self.doc_status.get_docs_by_status(DocStatus.FAILED), self.doc_status.get_docs_by_status(DocStatus.PENDING), ) to_process_docs: dict[str, DocProcessingStatus] = {} to_process_docs.update(processing_docs) to_process_docs.update(failed_docs) to_process_docs.update(pending_docs) if not to_process_docs: logger.info("No documents to process") return pipeline_status.update( { "busy": True, "job_name": "indexing files", "job_start": datetime.now().isoformat(), "docs": 0, "batchs": 0, "cur_batch": 0, "request_pending": False, # Clear any previous request "latest_message": "", } ) # Cleaning history_messages without breaking it as a shared list object del pipeline_status["history_messages"][:] else: # Another process is busy, just set request flag and return pipeline_status["request_pending"] = True logger.info( "Another process is already processing the document queue. Request queued." ) return try: # Process documents until no more documents or requests while True: if not to_process_docs: log_message = "All documents have been processed or are duplicates" logger.info(log_message) pipeline_status["latest_message"] = log_message pipeline_status["history_messages"].append(log_message) break # 2. split docs into chunks, insert chunks, update doc status docs_batches = [ list(to_process_docs.items())[i : i + self.max_parallel_insert] for i in range(0, len(to_process_docs), self.max_parallel_insert) ] log_message = f"Processing {len(to_process_docs)} document(s) in {len(docs_batches)} batches" logger.info(log_message) # Update pipeline status with current batch information pipeline_status["docs"] += len(to_process_docs) pipeline_status["batchs"] += len(docs_batches) pipeline_status["latest_message"] = log_message pipeline_status["history_messages"].append(log_message) async def process_document( doc_id: str, status_doc: DocProcessingStatus, split_by_character: str | None, split_by_character_only: bool, pipeline_status: dict, pipeline_status_lock: asyncio.Lock ) -> None: """Process single document""" try: # Generate chunks from document chunks: dict[str, Any] = { compute_mdhash_id(dp["content"], prefix="chunk-"): { **dp, "full_doc_id": doc_id, } for dp in self.chunking_func( status_doc.content, split_by_character, split_by_character_only, self.chunk_overlap_token_size, self.chunk_token_size, self.tiktoken_model_name, ) } # Process document (text chunks and full docs) in parallel # Create tasks with references for potential cancellation doc_status_task = asyncio.create_task( self.doc_status.upsert( { doc_id: { "status": DocStatus.PROCESSING, "updated_at": datetime.now().isoformat(), "content": status_doc.content, "content_summary": status_doc.content_summary, "content_length": status_doc.content_length, "created_at": status_doc.created_at, } } ) ) chunks_vdb_task = asyncio.create_task( self.chunks_vdb.upsert(chunks) ) entity_relation_task = asyncio.create_task( self._process_entity_relation_graph( chunks, pipeline_status, pipeline_status_lock ) ) full_docs_task = asyncio.create_task( self.full_docs.upsert( {doc_id: {"content": status_doc.content}} ) ) text_chunks_task = asyncio.create_task( self.text_chunks.upsert(chunks) ) tasks = [ doc_status_task, chunks_vdb_task, entity_relation_task, full_docs_task, text_chunks_task, ] await asyncio.gather(*tasks) await self.doc_status.upsert( { doc_id: { "status": DocStatus.PROCESSED, "chunks_count": len(chunks), "content": status_doc.content, "content_summary": status_doc.content_summary, "content_length": status_doc.content_length, "created_at": status_doc.created_at, "updated_at": datetime.now().isoformat(), } } ) except Exception as e: # Log error and update pipeline status error_msg = ( f"Failed to process document {doc_id}: {str(e)}" ) logger.error(error_msg) async with pipeline_status_lock: pipeline_status["latest_message"] = error_msg pipeline_status["history_messages"].append(error_msg) # Cancel other tasks as they are no longer meaningful for task in [ chunks_vdb_task, entity_relation_task, full_docs_task, text_chunks_task, ]: if not task.done(): task.cancel() # Update document status to failed await self.doc_status.upsert( { doc_id: { "status": DocStatus.FAILED, "error": str(e), "content": status_doc.content, "content_summary": status_doc.content_summary, "content_length": status_doc.content_length, "created_at": status_doc.created_at, "updated_at": datetime.now().isoformat(), } } ) # 3. iterate over batches total_batches = len(docs_batches) for batch_idx, docs_batch in enumerate(docs_batches): current_batch = batch_idx + 1 log_message = f"Start processing batch {current_batch} of {total_batches}." logger.info(log_message) pipeline_status["cur_batch"] = current_batch pipeline_status["latest_message"] = log_message pipeline_status["history_messages"].append(log_message) doc_tasks = [] for doc_id, status_doc in docs_batch: doc_tasks.append( process_document( doc_id, status_doc, split_by_character, split_by_character_only, pipeline_status, pipeline_status_lock ) ) # Process documents in one batch parallelly await asyncio.gather(*doc_tasks) await self._insert_done() log_message = f"Completed batch {current_batch} of {total_batches}." logger.info(log_message) pipeline_status["latest_message"] = log_message pipeline_status["history_messages"].append(log_message) # Check if there's a pending request to process more documents (with lock) has_pending_request = False async with pipeline_status_lock: has_pending_request = pipeline_status.get("request_pending", False) if has_pending_request: # Clear the request flag before checking for more documents pipeline_status["request_pending"] = False if not has_pending_request: break log_message = "Processing additional documents due to pending request" logger.info(log_message) pipeline_status["latest_message"] = log_message pipeline_status["history_messages"].append(log_message) # Check for pending documents again processing_docs, failed_docs, pending_docs = await asyncio.gather( self.doc_status.get_docs_by_status(DocStatus.PROCESSING), self.doc_status.get_docs_by_status(DocStatus.FAILED), self.doc_status.get_docs_by_status(DocStatus.PENDING), ) to_process_docs = {} to_process_docs.update(processing_docs) to_process_docs.update(failed_docs) to_process_docs.update(pending_docs) finally: log_message = "Document processing pipeline completed" logger.info(log_message) # Always reset busy status when done or if an exception occurs (with lock) async with pipeline_status_lock: pipeline_status["busy"] = False pipeline_status["latest_message"] = log_message pipeline_status["history_messages"].append(log_message) async def _process_entity_relation_graph( self, chunk: dict[str, Any], pipeline_status=None, pipeline_status_lock=None ) -> None: try: await extract_entities( chunk, knowledge_graph_inst=self.chunk_entity_relation_graph, entity_vdb=self.entities_vdb, relationships_vdb=self.relationships_vdb, global_config=asdict(self), pipeline_status=pipeline_status, pipeline_status_lock=pipeline_status_lock, llm_response_cache=self.llm_response_cache, ) except Exception as e: logger.error("Failed to extract entities and relationships") raise e async def _insert_done( self, pipeline_status=None, pipeline_status_lock=None ) -> None: tasks = [ cast(StorageNameSpace, storage_inst).index_done_callback() for storage_inst in [ # type: ignore self.full_docs, self.text_chunks, self.llm_response_cache, self.entities_vdb, self.relationships_vdb, self.chunks_vdb, self.chunk_entity_relation_graph, ] if storage_inst is not None ] await asyncio.gather(*tasks) log_message = "All data persist to disk" logger.info(log_message) if pipeline_status is not None and pipeline_status_lock is not None: async with pipeline_status_lock: pipeline_status["latest_message"] = log_message pipeline_status["history_messages"].append(log_message) def insert_custom_kg( self, custom_kg: dict[str, Any], full_doc_id: str = None ) -> None: loop = always_get_an_event_loop() loop.run_until_complete(self.ainsert_custom_kg(custom_kg, full_doc_id)) async def ainsert_custom_kg( self, custom_kg: dict[str, Any], full_doc_id: str = None ) -> None: update_storage = False try: # Insert chunks into vector storage all_chunks_data: dict[str, dict[str, str]] = {} chunk_to_source_map: dict[str, str] = {} for chunk_data in custom_kg.get("chunks", []): chunk_content = clean_text(chunk_data["content"]) source_id = chunk_data["source_id"] tokens = len( encode_string_by_tiktoken( chunk_content, model_name=self.tiktoken_model_name ) ) chunk_order_index = ( 0 if "chunk_order_index" not in chunk_data.keys() else chunk_data["chunk_order_index"] ) chunk_id = compute_mdhash_id(chunk_content, prefix="chunk-") chunk_entry = { "content": chunk_content, "source_id": source_id, "tokens": tokens, "chunk_order_index": chunk_order_index, "full_doc_id": full_doc_id if full_doc_id is not None else source_id, "status": DocStatus.PROCESSED, } all_chunks_data[chunk_id] = chunk_entry chunk_to_source_map[source_id] = chunk_id update_storage = True if all_chunks_data: await asyncio.gather( self.chunks_vdb.upsert(all_chunks_data), self.text_chunks.upsert(all_chunks_data), ) # Insert entities into knowledge graph all_entities_data: list[dict[str, str]] = [] for entity_data in custom_kg.get("entities", []): entity_name = entity_data["entity_name"] entity_type = entity_data.get("entity_type", "UNKNOWN") description = entity_data.get("description", "No description provided") source_chunk_id = entity_data.get("source_id", "UNKNOWN") source_id = chunk_to_source_map.get(source_chunk_id, "UNKNOWN") # Log if source_id is UNKNOWN if source_id == "UNKNOWN": logger.warning( f"Entity '{entity_name}' has an UNKNOWN source_id. Please check the source mapping." ) # Prepare node data node_data: dict[str, str] = { "entity_id": entity_name, "entity_type": entity_type, "description": description, "source_id": source_id, } # Insert node data into the knowledge graph await self.chunk_entity_relation_graph.upsert_node( entity_name, node_data=node_data ) node_data["entity_name"] = entity_name all_entities_data.append(node_data) update_storage = True # Insert relationships into knowledge graph all_relationships_data: list[dict[str, str]] = [] for relationship_data in custom_kg.get("relationships", []): src_id = relationship_data["src_id"] tgt_id = relationship_data["tgt_id"] description = relationship_data["description"] keywords = relationship_data["keywords"] weight = relationship_data.get("weight", 1.0) source_chunk_id = relationship_data.get("source_id", "UNKNOWN") source_id = chunk_to_source_map.get(source_chunk_id, "UNKNOWN") # Log if source_id is UNKNOWN if source_id == "UNKNOWN": logger.warning( f"Relationship from '{src_id}' to '{tgt_id}' has an UNKNOWN source_id. Please check the source mapping." ) # Check if nodes exist in the knowledge graph for need_insert_id in [src_id, tgt_id]: if not ( await self.chunk_entity_relation_graph.has_node(need_insert_id) ): await self.chunk_entity_relation_graph.upsert_node( need_insert_id, node_data={ "entity_id": need_insert_id, "source_id": source_id, "description": "UNKNOWN", "entity_type": "UNKNOWN", }, ) # Insert edge into the knowledge graph await self.chunk_entity_relation_graph.upsert_edge( src_id, tgt_id, edge_data={ "weight": weight, "description": description, "keywords": keywords, "source_id": source_id, }, ) edge_data: dict[str, str] = { "src_id": src_id, "tgt_id": tgt_id, "description": description, "keywords": keywords, "source_id": source_id, "weight": weight, } all_relationships_data.append(edge_data) update_storage = True # Insert entities into vector storage with consistent format data_for_vdb = { compute_mdhash_id(dp["entity_name"], prefix="ent-"): { "content": dp["entity_name"] + "\n" + dp["description"], "entity_name": dp["entity_name"], "source_id": dp["source_id"], "description": dp["description"], "entity_type": dp["entity_type"], } for dp in all_entities_data } await self.entities_vdb.upsert(data_for_vdb) # Insert relationships into vector storage with consistent format data_for_vdb = { compute_mdhash_id(dp["src_id"] + dp["tgt_id"], prefix="rel-"): { "src_id": dp["src_id"], "tgt_id": dp["tgt_id"], "source_id": dp["source_id"], "content": f"{dp['keywords']}\t{dp['src_id']}\n{dp['tgt_id']}\n{dp['description']}", "keywords": dp["keywords"], "description": dp["description"], "weight": dp["weight"], } for dp in all_relationships_data } await self.relationships_vdb.upsert(data_for_vdb) except Exception as e: logger.error(f"Error in ainsert_custom_kg: {e}") raise finally: if update_storage: await self._insert_done() def query( self, query: str, param: QueryParam = QueryParam(), system_prompt: str | None = None, ) -> str | Iterator[str]: """ Perform a sync query. Args: query (str): The query to be executed. param (QueryParam): Configuration parameters for query execution. prompt (Optional[str]): Custom prompts for fine-tuned control over the system's behavior. Defaults to None, which uses PROMPTS["rag_response"]. Returns: str: The result of the query execution. """ loop = always_get_an_event_loop() return loop.run_until_complete(self.aquery(query, param, system_prompt)) # type: ignore async def aquery( self, query: str, param: QueryParam = QueryParam(), system_prompt: str | None = None, ) -> str | AsyncIterator[str]: """ Perform a async query. Args: query (str): The query to be executed. param (QueryParam): Configuration parameters for query execution. prompt (Optional[str]): Custom prompts for fine-tuned control over the system's behavior. Defaults to None, which uses PROMPTS["rag_response"]. Returns: str: The result of the query execution. """ if param.mode in ["local", "global", "hybrid"]: response = await kg_query( query.strip(), self.chunk_entity_relation_graph, self.entities_vdb, self.relationships_vdb, self.text_chunks, param, asdict(self), hashing_kv=self.llm_response_cache, # Directly use llm_response_cache system_prompt=system_prompt, ) elif param.mode == "naive": response = await naive_query( query.strip(), self.chunks_vdb, self.text_chunks, param, asdict(self), hashing_kv=self.llm_response_cache, # Directly use llm_response_cache system_prompt=system_prompt, ) elif param.mode == "mix": response = await mix_kg_vector_query( query.strip(), self.chunk_entity_relation_graph, self.entities_vdb, self.relationships_vdb, self.chunks_vdb, self.text_chunks, param, asdict(self), hashing_kv=self.llm_response_cache, # Directly use llm_response_cache system_prompt=system_prompt, ) else: raise ValueError(f"Unknown mode {param.mode}") await self._query_done() return response def query_with_separate_keyword_extraction( self, query: str, prompt: str, param: QueryParam = QueryParam() ): """ Query with separate keyword extraction step. This method extracts keywords from the query first, then uses them for the query. Args: query: User query prompt: Additional prompt for the query param: Query parameters Returns: Query response """ loop = always_get_an_event_loop() return loop.run_until_complete( self.aquery_with_separate_keyword_extraction(query, prompt, param) ) async def aquery_with_separate_keyword_extraction( self, query: str, prompt: str, param: QueryParam = QueryParam() ) -> str | AsyncIterator[str]: """ Async version of query_with_separate_keyword_extraction. Args: query: User query prompt: Additional prompt for the query param: Query parameters Returns: Query response or async iterator """ response = await query_with_keywords( query=query, prompt=prompt, param=param, knowledge_graph_inst=self.chunk_entity_relation_graph, entities_vdb=self.entities_vdb, relationships_vdb=self.relationships_vdb, chunks_vdb=self.chunks_vdb, text_chunks_db=self.text_chunks, global_config=asdict(self), hashing_kv=self.llm_response_cache, ) await self._query_done() return response async def _query_done(self): await self.llm_response_cache.index_done_callback() def delete_by_entity(self, entity_name: str) -> None: loop = always_get_an_event_loop() return loop.run_until_complete(self.adelete_by_entity(entity_name)) async def adelete_by_entity(self, entity_name: str) -> None: try: await self.entities_vdb.delete_entity(entity_name) await self.relationships_vdb.delete_entity_relation(entity_name) await self.chunk_entity_relation_graph.delete_node(entity_name) logger.info( f"Entity '{entity_name}' and its relationships have been deleted." ) await self._delete_by_entity_done() except Exception as e: logger.error(f"Error while deleting entity '{entity_name}': {e}") async def _delete_by_entity_done(self) -> None: await asyncio.gather( *[ cast(StorageNameSpace, storage_inst).index_done_callback() for storage_inst in [ # type: ignore self.entities_vdb, self.relationships_vdb, self.chunk_entity_relation_graph, ] ] ) def delete_by_relation(self, source_entity: str, target_entity: str) -> None: """Synchronously delete a relation between two entities. Args: source_entity: Name of the source entity target_entity: Name of the target entity """ loop = always_get_an_event_loop() return loop.run_until_complete( self.adelete_by_relation(source_entity, target_entity) ) async def adelete_by_relation(self, source_entity: str, target_entity: str) -> None: """Asynchronously delete a relation between two entities. Args: source_entity: Name of the source entity target_entity: Name of the target entity """ try: # Check if the relation exists edge_exists = await self.chunk_entity_relation_graph.has_edge( source_entity, target_entity ) if not edge_exists: logger.warning( f"Relation from '{source_entity}' to '{target_entity}' does not exist" ) return # Delete relation from vector database relation_id = compute_mdhash_id( source_entity + target_entity, prefix="rel-" ) await self.relationships_vdb.delete([relation_id]) # Delete relation from knowledge graph await self.chunk_entity_relation_graph.remove_edges( [(source_entity, target_entity)] ) logger.info( f"Successfully deleted relation from '{source_entity}' to '{target_entity}'" ) await self._delete_relation_done() except Exception as e: logger.error( f"Error while deleting relation from '{source_entity}' to '{target_entity}': {e}" ) async def _delete_relation_done(self) -> None: """Callback after relation deletion is complete""" await asyncio.gather( *[ cast(StorageNameSpace, storage_inst).index_done_callback() for storage_inst in [ # type: ignore self.relationships_vdb, self.chunk_entity_relation_graph, ] ] ) async def get_processing_status(self) -> dict[str, int]: """Get current document processing status counts Returns: Dict with counts for each status """ return await self.doc_status.get_status_counts() async def get_docs_by_status( self, status: DocStatus ) -> dict[str, DocProcessingStatus]: """Get documents by status Returns: Dict with document id is keys and document status is values """ return await self.doc_status.get_docs_by_status(status) async def adelete_by_doc_id(self, doc_id: str) -> None: """Delete a document and all its related data Args: doc_id: Document ID to delete """ try: # 1. Get the document status and related data doc_status = await self.doc_status.get_by_id(doc_id) if not doc_status: logger.warning(f"Document {doc_id} not found") return logger.debug(f"Starting deletion for document {doc_id}") # 2. Get all chunks related to this document # Find all chunks where full_doc_id equals the current doc_id all_chunks = await self.text_chunks.get_all() related_chunks = { chunk_id: chunk_data for chunk_id, chunk_data in all_chunks.items() if isinstance(chunk_data, dict) and chunk_data.get("full_doc_id") == doc_id } if not related_chunks: logger.warning(f"No chunks found for document {doc_id}") return # Get all related chunk IDs chunk_ids = set(related_chunks.keys()) logger.debug(f"Found {len(chunk_ids)} chunks to delete") # 3. Before deleting, check the related entities and relationships for these chunks for chunk_id in chunk_ids: # Check entities entities_storage = await self.entities_vdb.client_storage entities = [ dp for dp in entities_storage["data"] if chunk_id in dp.get("source_id") ] logger.debug(f"Chunk {chunk_id} has {len(entities)} related entities") # Check relationships relationships_storage = await self.relationships_vdb.client_storage relations = [ dp for dp in relationships_storage["data"] if chunk_id in dp.get("source_id") ] logger.debug(f"Chunk {chunk_id} has {len(relations)} related relations") # Continue with the original deletion process... # 4. Delete chunks from vector database if chunk_ids: await self.chunks_vdb.delete(chunk_ids) await self.text_chunks.delete(chunk_ids) # 5. Find and process entities and relationships that have these chunks as source # Get all nodes and edges from the graph storage using storage-agnostic methods entities_to_delete = set() entities_to_update = {} # entity_name -> new_source_id relationships_to_delete = set() relationships_to_update = {} # (src, tgt) -> new_source_id # Process entities - use storage-agnostic methods all_labels = await self.chunk_entity_relation_graph.get_all_labels() for node_label in all_labels: node_data = await self.chunk_entity_relation_graph.get_node(node_label) if node_data and "source_id" in node_data: # Split source_id using GRAPH_FIELD_SEP sources = set(node_data["source_id"].split(GRAPH_FIELD_SEP)) sources.difference_update(chunk_ids) if not sources: entities_to_delete.add(node_label) logger.debug( f"Entity {node_label} marked for deletion - no remaining sources" ) else: new_source_id = GRAPH_FIELD_SEP.join(sources) entities_to_update[node_label] = new_source_id logger.debug( f"Entity {node_label} will be updated with new source_id: {new_source_id}" ) # Process relationships for node_label in all_labels: node_edges = await self.chunk_entity_relation_graph.get_node_edges( node_label ) if node_edges: for src, tgt in node_edges: edge_data = await self.chunk_entity_relation_graph.get_edge( src, tgt ) if edge_data and "source_id" in edge_data: # Split source_id using GRAPH_FIELD_SEP sources = set(edge_data["source_id"].split(GRAPH_FIELD_SEP)) sources.difference_update(chunk_ids) if not sources: relationships_to_delete.add((src, tgt)) logger.debug( f"Relationship {src}-{tgt} marked for deletion - no remaining sources" ) else: new_source_id = GRAPH_FIELD_SEP.join(sources) relationships_to_update[(src, tgt)] = new_source_id logger.debug( f"Relationship {src}-{tgt} will be updated with new source_id: {new_source_id}" ) # Delete entities if entities_to_delete: for entity in entities_to_delete: await self.entities_vdb.delete_entity(entity) logger.debug(f"Deleted entity {entity} from vector DB") await self.chunk_entity_relation_graph.remove_nodes( list(entities_to_delete) ) logger.debug(f"Deleted {len(entities_to_delete)} entities from graph") # Update entities for entity, new_source_id in entities_to_update.items(): node_data = await self.chunk_entity_relation_graph.get_node(entity) if node_data: node_data["source_id"] = new_source_id await self.chunk_entity_relation_graph.upsert_node( entity, node_data ) logger.debug( f"Updated entity {entity} with new source_id: {new_source_id}" ) # Delete relationships if relationships_to_delete: for src, tgt in relationships_to_delete: rel_id_0 = compute_mdhash_id(src + tgt, prefix="rel-") rel_id_1 = compute_mdhash_id(tgt + src, prefix="rel-") await self.relationships_vdb.delete([rel_id_0, rel_id_1]) logger.debug(f"Deleted relationship {src}-{tgt} from vector DB") await self.chunk_entity_relation_graph.remove_edges( list(relationships_to_delete) ) logger.debug( f"Deleted {len(relationships_to_delete)} relationships from graph" ) # Update relationships for (src, tgt), new_source_id in relationships_to_update.items(): edge_data = await self.chunk_entity_relation_graph.get_edge(src, tgt) if edge_data: edge_data["source_id"] = new_source_id await self.chunk_entity_relation_graph.upsert_edge( src, tgt, edge_data ) logger.debug( f"Updated relationship {src}-{tgt} with new source_id: {new_source_id}" ) # 6. Delete original document and status await self.full_docs.delete([doc_id]) await self.doc_status.delete([doc_id]) # 7. Ensure all indexes are updated await self._insert_done() logger.info( f"Successfully deleted document {doc_id} and related data. " f"Deleted {len(entities_to_delete)} entities and {len(relationships_to_delete)} relationships. " f"Updated {len(entities_to_update)} entities and {len(relationships_to_update)} relationships." ) async def process_data(data_type, vdb, chunk_id): # Check data (entities or relationships) storage = await vdb.client_storage data_with_chunk = [ dp for dp in storage["data"] if chunk_id in (dp.get("source_id") or "").split(GRAPH_FIELD_SEP) ] data_for_vdb = {} if data_with_chunk: logger.warning( f"found {len(data_with_chunk)} {data_type} still referencing chunk {chunk_id}" ) for item in data_with_chunk: old_sources = item["source_id"].split(GRAPH_FIELD_SEP) new_sources = [src for src in old_sources if src != chunk_id] if not new_sources: logger.info( f"{data_type} {item.get('entity_name', 'N/A')} is deleted because source_id is not exists" ) await vdb.delete_entity(item) else: item["source_id"] = GRAPH_FIELD_SEP.join(new_sources) item_id = item["__id__"] data_for_vdb[item_id] = item.copy() if data_type == "entities": data_for_vdb[item_id]["content"] = data_for_vdb[ item_id ].get("content") or ( item.get("entity_name", "") + (item.get("description") or "") ) else: # relationships data_for_vdb[item_id]["content"] = data_for_vdb[ item_id ].get("content") or ( (item.get("keywords") or "") + (item.get("src_id") or "") + (item.get("tgt_id") or "") + (item.get("description") or "") ) if data_for_vdb: await vdb.upsert(data_for_vdb) logger.info(f"Successfully updated {data_type} in vector DB") # Add verification step async def verify_deletion(): # Verify if the document has been deleted if await self.full_docs.get_by_id(doc_id): logger.warning(f"Document {doc_id} still exists in full_docs") # Verify if chunks have been deleted all_remaining_chunks = await self.text_chunks.get_all() remaining_related_chunks = { chunk_id: chunk_data for chunk_id, chunk_data in all_remaining_chunks.items() if isinstance(chunk_data, dict) and chunk_data.get("full_doc_id") == doc_id } if remaining_related_chunks: logger.warning( f"Found {len(remaining_related_chunks)} remaining chunks" ) # Verify entities and relationships for chunk_id in chunk_ids: await process_data("entities", self.entities_vdb, chunk_id) await process_data( "relationships", self.relationships_vdb, chunk_id ) await verify_deletion() except Exception as e: logger.error(f"Error while deleting document {doc_id}: {e}") async def get_entity_info( self, entity_name: str, include_vector_data: bool = False ) -> dict[str, str | None | dict[str, str]]: """Get detailed information of an entity""" # Get information from the graph node_data = await self.chunk_entity_relation_graph.get_node(entity_name) source_id = node_data.get("source_id") if node_data else None result: dict[str, str | None | dict[str, str]] = { "entity_name": entity_name, "source_id": source_id, "graph_data": node_data, } # Optional: Get vector database information if include_vector_data: entity_id = compute_mdhash_id(entity_name, prefix="ent-") vector_data = await self.entities_vdb.get_by_id(entity_id) result["vector_data"] = vector_data return result async def get_relation_info( self, src_entity: str, tgt_entity: str, include_vector_data: bool = False ) -> dict[str, str | None | dict[str, str]]: """Get detailed information of a relationship""" # Get information from the graph edge_data = await self.chunk_entity_relation_graph.get_edge( src_entity, tgt_entity ) source_id = edge_data.get("source_id") if edge_data else None result: dict[str, str | None | dict[str, str]] = { "src_entity": src_entity, "tgt_entity": tgt_entity, "source_id": source_id, "graph_data": edge_data, } # Optional: Get vector database information if include_vector_data: rel_id = compute_mdhash_id(src_entity + tgt_entity, prefix="rel-") vector_data = await self.relationships_vdb.get_by_id(rel_id) result["vector_data"] = vector_data return result def check_storage_env_vars(self, storage_name: str) -> None: """Check if all required environment variables for storage implementation exist Args: storage_name: Storage implementation name Raises: ValueError: If required environment variables are missing """ required_vars = STORAGE_ENV_REQUIREMENTS.get(storage_name, []) missing_vars = [var for var in required_vars if var not in os.environ] if missing_vars: raise ValueError( f"Storage implementation '{storage_name}' requires the following " f"environment variables: {', '.join(missing_vars)}" ) async def aclear_cache(self, modes: list[str] | None = None) -> None: """Clear cache data from the LLM response cache storage. Args: modes (list[str] | None): Modes of cache to clear. Options: ["default", "naive", "local", "global", "hybrid", "mix"]. "default" represents extraction cache. If None, clears all cache. Example: # Clear all cache await rag.aclear_cache() # Clear local mode cache await rag.aclear_cache(modes=["local"]) # Clear extraction cache await rag.aclear_cache(modes=["default"]) """ if not self.llm_response_cache: logger.warning("No cache storage configured") return valid_modes = ["default", "naive", "local", "global", "hybrid", "mix"] # Validate input if modes and not all(mode in valid_modes for mode in modes): raise ValueError(f"Invalid mode. Valid modes are: {valid_modes}") try: # Reset the cache storage for specified mode if modes: await self.llm_response_cache.delete(modes) logger.info(f"Cleared cache for modes: {modes}") else: # Clear all modes await self.llm_response_cache.delete(valid_modes) logger.info("Cleared all cache") await self.llm_response_cache.index_done_callback() except Exception as e: logger.error(f"Error while clearing cache: {e}") def clear_cache(self, modes: list[str] | None = None) -> None: """Synchronous version of aclear_cache.""" return always_get_an_event_loop().run_until_complete(self.aclear_cache(modes)) async def aedit_entity( self, entity_name: str, updated_data: dict[str, str], allow_rename: bool = True ) -> dict[str, Any]: """Asynchronously edit entity information. Updates entity information in the knowledge graph and re-embeds the entity in the vector database. Args: entity_name: Name of the entity to edit updated_data: Dictionary containing updated attributes, e.g. {"description": "new description", "entity_type": "new type"} allow_rename: Whether to allow entity renaming, defaults to True Returns: Dictionary containing updated entity information """ try: # 1. Get current entity information node_exists = await self.chunk_entity_relation_graph.has_node(entity_name) if not node_exists: raise ValueError(f"Entity '{entity_name}' does not exist") node_data = await self.chunk_entity_relation_graph.get_node(entity_name) # Check if entity is being renamed new_entity_name = updated_data.get("entity_name", entity_name) is_renaming = new_entity_name != entity_name # If renaming, check if new name already exists if is_renaming: if not allow_rename: raise ValueError( "Entity renaming is not allowed. Set allow_rename=True to enable this feature" ) existing_node = await self.chunk_entity_relation_graph.has_node( new_entity_name ) if existing_node: raise ValueError( f"Entity name '{new_entity_name}' already exists, cannot rename" ) # 2. Update entity information in the graph new_node_data = {**node_data, **updated_data} if "entity_name" in new_node_data: del new_node_data[ "entity_name" ] # Node data should not contain entity_name field # If renaming entity if is_renaming: logger.info(f"Renaming entity '{entity_name}' to '{new_entity_name}'") # Create new entity await self.chunk_entity_relation_graph.upsert_node( new_entity_name, new_node_data ) # Store relationships that need to be updated relations_to_update = [] # Get all edges related to the original entity edges = await self.chunk_entity_relation_graph.get_node_edges( entity_name ) if edges: # Recreate edges for the new entity for source, target in edges: edge_data = await self.chunk_entity_relation_graph.get_edge( source, target ) if edge_data: if source == entity_name: await self.chunk_entity_relation_graph.upsert_edge( new_entity_name, target, edge_data ) relations_to_update.append( (new_entity_name, target, edge_data) ) else: # target == entity_name await self.chunk_entity_relation_graph.upsert_edge( source, new_entity_name, edge_data ) relations_to_update.append( (source, new_entity_name, edge_data) ) # Delete old entity await self.chunk_entity_relation_graph.delete_node(entity_name) # Delete old entity record from vector database old_entity_id = compute_mdhash_id(entity_name, prefix="ent-") await self.entities_vdb.delete([old_entity_id]) logger.info( f"Deleted old entity '{entity_name}' and its vector embedding from database" ) # Update relationship vector representations for src, tgt, edge_data in relations_to_update: description = edge_data.get("description", "") keywords = edge_data.get("keywords", "") source_id = edge_data.get("source_id", "") weight = float(edge_data.get("weight", 1.0)) # Create new content for embedding content = f"{src}\t{tgt}\n{keywords}\n{description}" # Calculate relationship ID relation_id = compute_mdhash_id(src + tgt, prefix="rel-") # Prepare data for vector database update relation_data = { relation_id: { "content": content, "src_id": src, "tgt_id": tgt, "source_id": source_id, "description": description, "keywords": keywords, "weight": weight, } } # Update vector database await self.relationships_vdb.upsert(relation_data) # Update working entity name to new name entity_name = new_entity_name else: # If not renaming, directly update node data await self.chunk_entity_relation_graph.upsert_node( entity_name, new_node_data ) # 3. Recalculate entity's vector representation and update vector database description = new_node_data.get("description", "") source_id = new_node_data.get("source_id", "") entity_type = new_node_data.get("entity_type", "") content = entity_name + "\n" + description # Calculate entity ID entity_id = compute_mdhash_id(entity_name, prefix="ent-") # Prepare data for vector database update entity_data = { entity_id: { "content": content, "entity_name": entity_name, "source_id": source_id, "description": description, "entity_type": entity_type, } } # Update vector database await self.entities_vdb.upsert(entity_data) # 4. Save changes await self._edit_entity_done() logger.info(f"Entity '{entity_name}' successfully updated") return await self.get_entity_info(entity_name, include_vector_data=True) except Exception as e: logger.error(f"Error while editing entity '{entity_name}': {e}") raise def edit_entity( self, entity_name: str, updated_data: dict[str, str], allow_rename: bool = True ) -> dict[str, Any]: """Synchronously edit entity information. Updates entity information in the knowledge graph and re-embeds the entity in the vector database. Args: entity_name: Name of the entity to edit updated_data: Dictionary containing updated attributes, e.g. {"description": "new description", "entity_type": "new type"} allow_rename: Whether to allow entity renaming, defaults to True Returns: Dictionary containing updated entity information """ loop = always_get_an_event_loop() return loop.run_until_complete( self.aedit_entity(entity_name, updated_data, allow_rename) ) async def _edit_entity_done(self) -> None: """Callback after entity editing is complete, ensures updates are persisted""" await asyncio.gather( *[ cast(StorageNameSpace, storage_inst).index_done_callback() for storage_inst in [ # type: ignore self.entities_vdb, self.relationships_vdb, self.chunk_entity_relation_graph, ] ] ) async def aedit_relation( self, source_entity: str, target_entity: str, updated_data: dict[str, Any] ) -> dict[str, Any]: """Asynchronously edit relation information. Updates relation (edge) information in the knowledge graph and re-embeds the relation in the vector database. Args: source_entity: Name of the source entity target_entity: Name of the target entity updated_data: Dictionary containing updated attributes, e.g. {"description": "new description", "keywords": "new keywords"} Returns: Dictionary containing updated relation information """ try: # 1. Get current relation information edge_exists = await self.chunk_entity_relation_graph.has_edge( source_entity, target_entity ) if not edge_exists: raise ValueError( f"Relation from '{source_entity}' to '{target_entity}' does not exist" ) edge_data = await self.chunk_entity_relation_graph.get_edge( source_entity, target_entity ) # Important: First delete the old relation record from the vector database old_relation_id = compute_mdhash_id( source_entity + target_entity, prefix="rel-" ) await self.relationships_vdb.delete([old_relation_id]) logger.info( f"Deleted old relation record from vector database for relation {source_entity} -> {target_entity}" ) # 2. Update relation information in the graph new_edge_data = {**edge_data, **updated_data} await self.chunk_entity_relation_graph.upsert_edge( source_entity, target_entity, new_edge_data ) # 3. Recalculate relation's vector representation and update vector database description = new_edge_data.get("description", "") keywords = new_edge_data.get("keywords", "") source_id = new_edge_data.get("source_id", "") weight = float(new_edge_data.get("weight", 1.0)) # Create content for embedding content = f"{source_entity}\t{target_entity}\n{keywords}\n{description}" # Calculate relation ID relation_id = compute_mdhash_id( source_entity + target_entity, prefix="rel-" ) # Prepare data for vector database update relation_data = { relation_id: { "content": content, "src_id": source_entity, "tgt_id": target_entity, "source_id": source_id, "description": description, "keywords": keywords, "weight": weight, } } # Update vector database await self.relationships_vdb.upsert(relation_data) # 4. Save changes await self._edit_relation_done() logger.info( f"Relation from '{source_entity}' to '{target_entity}' successfully updated" ) return await self.get_relation_info( source_entity, target_entity, include_vector_data=True ) except Exception as e: logger.error( f"Error while editing relation from '{source_entity}' to '{target_entity}': {e}" ) raise def edit_relation( self, source_entity: str, target_entity: str, updated_data: dict[str, Any] ) -> dict[str, Any]: """Synchronously edit relation information. Updates relation (edge) information in the knowledge graph and re-embeds the relation in the vector database. Args: source_entity: Name of the source entity target_entity: Name of the target entity updated_data: Dictionary containing updated attributes, e.g. {"description": "new description", "keywords": "keywords"} Returns: Dictionary containing updated relation information """ loop = always_get_an_event_loop() return loop.run_until_complete( self.aedit_relation(source_entity, target_entity, updated_data) ) async def _edit_relation_done(self) -> None: """Callback after relation editing is complete, ensures updates are persisted""" await asyncio.gather( *[ cast(StorageNameSpace, storage_inst).index_done_callback() for storage_inst in [ # type: ignore self.relationships_vdb, self.chunk_entity_relation_graph, ] ] ) async def acreate_entity( self, entity_name: str, entity_data: dict[str, Any] ) -> dict[str, Any]: """Asynchronously create a new entity. Creates a new entity in the knowledge graph and adds it to the vector database. Args: entity_name: Name of the new entity entity_data: Dictionary containing entity attributes, e.g. {"description": "description", "entity_type": "type"} Returns: Dictionary containing created entity information """ try: # Check if entity already exists existing_node = await self.chunk_entity_relation_graph.has_node(entity_name) if existing_node: raise ValueError(f"Entity '{entity_name}' already exists") # Prepare node data with defaults if missing node_data = { "entity_id": entity_name, "entity_type": entity_data.get("entity_type", "UNKNOWN"), "description": entity_data.get("description", ""), "source_id": entity_data.get("source_id", "manual"), } # Add entity to knowledge graph await self.chunk_entity_relation_graph.upsert_node(entity_name, node_data) # Prepare content for entity description = node_data.get("description", "") source_id = node_data.get("source_id", "") entity_type = node_data.get("entity_type", "") content = entity_name + "\n" + description # Calculate entity ID entity_id = compute_mdhash_id(entity_name, prefix="ent-") # Prepare data for vector database update entity_data_for_vdb = { entity_id: { "content": content, "entity_name": entity_name, "source_id": source_id, "description": description, "entity_type": entity_type, } } # Update vector database await self.entities_vdb.upsert(entity_data_for_vdb) # Save changes await self._edit_entity_done() logger.info(f"Entity '{entity_name}' successfully created") return await self.get_entity_info(entity_name, include_vector_data=True) except Exception as e: logger.error(f"Error while creating entity '{entity_name}': {e}") raise def create_entity( self, entity_name: str, entity_data: dict[str, Any] ) -> dict[str, Any]: """Synchronously create a new entity. Creates a new entity in the knowledge graph and adds it to the vector database. Args: entity_name: Name of the new entity entity_data: Dictionary containing entity attributes, e.g. {"description": "description", "entity_type": "type"} Returns: Dictionary containing created entity information """ loop = always_get_an_event_loop() return loop.run_until_complete(self.acreate_entity(entity_name, entity_data)) async def acreate_relation( self, source_entity: str, target_entity: str, relation_data: dict[str, Any] ) -> dict[str, Any]: """Asynchronously create a new relation between entities. Creates a new relation (edge) in the knowledge graph and adds it to the vector database. Args: source_entity: Name of the source entity target_entity: Name of the target entity relation_data: Dictionary containing relation attributes, e.g. {"description": "description", "keywords": "keywords"} Returns: Dictionary containing created relation information """ try: # Check if both entities exist source_exists = await self.chunk_entity_relation_graph.has_node( source_entity ) target_exists = await self.chunk_entity_relation_graph.has_node( target_entity ) if not source_exists: raise ValueError(f"Source entity '{source_entity}' does not exist") if not target_exists: raise ValueError(f"Target entity '{target_entity}' does not exist") # Check if relation already exists existing_edge = await self.chunk_entity_relation_graph.has_edge( source_entity, target_entity ) if existing_edge: raise ValueError( f"Relation from '{source_entity}' to '{target_entity}' already exists" ) # Prepare edge data with defaults if missing edge_data = { "description": relation_data.get("description", ""), "keywords": relation_data.get("keywords", ""), "source_id": relation_data.get("source_id", "manual"), "weight": float(relation_data.get("weight", 1.0)), } # Add relation to knowledge graph await self.chunk_entity_relation_graph.upsert_edge( source_entity, target_entity, edge_data ) # Prepare content for embedding description = edge_data.get("description", "") keywords = edge_data.get("keywords", "") source_id = edge_data.get("source_id", "") weight = edge_data.get("weight", 1.0) # Create content for embedding content = f"{keywords}\t{source_entity}\n{target_entity}\n{description}" # Calculate relation ID relation_id = compute_mdhash_id( source_entity + target_entity, prefix="rel-" ) # Prepare data for vector database update relation_data_for_vdb = { relation_id: { "content": content, "src_id": source_entity, "tgt_id": target_entity, "source_id": source_id, "description": description, "keywords": keywords, "weight": weight, } } # Update vector database await self.relationships_vdb.upsert(relation_data_for_vdb) # Save changes await self._edit_relation_done() logger.info( f"Relation from '{source_entity}' to '{target_entity}' successfully created" ) return await self.get_relation_info( source_entity, target_entity, include_vector_data=True ) except Exception as e: logger.error( f"Error while creating relation from '{source_entity}' to '{target_entity}': {e}" ) raise def create_relation( self, source_entity: str, target_entity: str, relation_data: dict[str, Any] ) -> dict[str, Any]: """Synchronously create a new relation between entities. Creates a new relation (edge) in the knowledge graph and adds it to the vector database. Args: source_entity: Name of the source entity target_entity: Name of the target entity relation_data: Dictionary containing relation attributes, e.g. {"description": "description", "keywords": "keywords"} Returns: Dictionary containing created relation information """ loop = always_get_an_event_loop() return loop.run_until_complete( self.acreate_relation(source_entity, target_entity, relation_data) ) async def amerge_entities( self, source_entities: list[str], target_entity: str, merge_strategy: dict[str, str] = None, target_entity_data: dict[str, Any] = None, ) -> dict[str, Any]: """Asynchronously merge multiple entities into one entity. Merges multiple source entities into a target entity, handling all relationships, and updating both the knowledge graph and vector database. Args: source_entities: List of source entity names to merge target_entity: Name of the target entity after merging merge_strategy: Merge strategy configuration, e.g. {"description": "concatenate", "entity_type": "keep_first"} Supported strategies: - "concatenate": Concatenate all values (for text fields) - "keep_first": Keep the first non-empty value - "keep_last": Keep the last non-empty value - "join_unique": Join all unique values (for fields separated by delimiter) target_entity_data: Dictionary of specific values to set for the target entity, overriding any merged values, e.g. {"description": "custom description", "entity_type": "PERSON"} Returns: Dictionary containing the merged entity information """ try: # Default merge strategy default_strategy = { "description": "concatenate", "entity_type": "keep_first", "source_id": "join_unique", } merge_strategy = ( default_strategy if merge_strategy is None else {**default_strategy, **merge_strategy} ) target_entity_data = ( {} if target_entity_data is None else target_entity_data ) # 1. Check if all source entities exist source_entities_data = {} for entity_name in source_entities: node_exists = await self.chunk_entity_relation_graph.has_node( entity_name ) if not node_exists: raise ValueError(f"Source entity '{entity_name}' does not exist") node_data = await self.chunk_entity_relation_graph.get_node(entity_name) source_entities_data[entity_name] = node_data # 2. Check if target entity exists and get its data if it does target_exists = await self.chunk_entity_relation_graph.has_node( target_entity ) existing_target_entity_data = {} if target_exists: existing_target_entity_data = ( await self.chunk_entity_relation_graph.get_node(target_entity) ) logger.info( f"Target entity '{target_entity}' already exists, will merge data" ) # 3. Merge entity data merged_entity_data = self._merge_entity_attributes( list(source_entities_data.values()) + ([existing_target_entity_data] if target_exists else []), merge_strategy, ) # Apply any explicitly provided target entity data (overrides merged data) for key, value in target_entity_data.items(): merged_entity_data[key] = value # 4. Get all relationships of the source entities all_relations = [] for entity_name in source_entities: # Get all relationships where this entity is the source outgoing_edges = await self.chunk_entity_relation_graph.get_node_edges( entity_name ) if outgoing_edges: for src, tgt in outgoing_edges: # Ensure src is the current entity if src == entity_name: edge_data = await self.chunk_entity_relation_graph.get_edge( src, tgt ) all_relations.append(("outgoing", src, tgt, edge_data)) # Get all relationships where this entity is the target incoming_edges = [] all_labels = await self.chunk_entity_relation_graph.get_all_labels() for label in all_labels: if label == entity_name: continue node_edges = await self.chunk_entity_relation_graph.get_node_edges( label ) for src, tgt in node_edges or []: if tgt == entity_name: incoming_edges.append((src, tgt)) for src, tgt in incoming_edges: edge_data = await self.chunk_entity_relation_graph.get_edge( src, tgt ) all_relations.append(("incoming", src, tgt, edge_data)) # 5. Create or update the target entity if not target_exists: await self.chunk_entity_relation_graph.upsert_node( target_entity, merged_entity_data ) logger.info(f"Created new target entity '{target_entity}'") else: await self.chunk_entity_relation_graph.upsert_node( target_entity, merged_entity_data ) logger.info(f"Updated existing target entity '{target_entity}'") # 6. Recreate all relationships, pointing to the target entity relation_updates = {} # Track relationships that need to be merged for rel_type, src, tgt, edge_data in all_relations: new_src = target_entity if src in source_entities else src new_tgt = target_entity if tgt in source_entities else tgt # Skip relationships between source entities to avoid self-loops if new_src == new_tgt: logger.info( f"Skipping relationship between source entities: {src} -> {tgt} to avoid self-loop" ) continue # Check if the same relationship already exists relation_key = f"{new_src}|{new_tgt}" if relation_key in relation_updates: # Merge relationship data existing_data = relation_updates[relation_key]["data"] merged_relation = self._merge_relation_attributes( [existing_data, edge_data], { "description": "concatenate", "keywords": "join_unique", "source_id": "join_unique", "weight": "max", }, ) relation_updates[relation_key]["data"] = merged_relation logger.info( f"Merged duplicate relationship: {new_src} -> {new_tgt}" ) else: relation_updates[relation_key] = { "src": new_src, "tgt": new_tgt, "data": edge_data.copy(), } # Apply relationship updates for rel_data in relation_updates.values(): await self.chunk_entity_relation_graph.upsert_edge( rel_data["src"], rel_data["tgt"], rel_data["data"] ) logger.info( f"Created or updated relationship: {rel_data['src']} -> {rel_data['tgt']}" ) # 7. Update entity vector representation description = merged_entity_data.get("description", "") source_id = merged_entity_data.get("source_id", "") entity_type = merged_entity_data.get("entity_type", "") content = target_entity + "\n" + description entity_id = compute_mdhash_id(target_entity, prefix="ent-") entity_data_for_vdb = { entity_id: { "content": content, "entity_name": target_entity, "source_id": source_id, "description": description, "entity_type": entity_type, } } await self.entities_vdb.upsert(entity_data_for_vdb) # 8. Update relationship vector representations for rel_data in relation_updates.values(): src = rel_data["src"] tgt = rel_data["tgt"] edge_data = rel_data["data"] description = edge_data.get("description", "") keywords = edge_data.get("keywords", "") source_id = edge_data.get("source_id", "") weight = float(edge_data.get("weight", 1.0)) content = f"{keywords}\t{src}\n{tgt}\n{description}" relation_id = compute_mdhash_id(src + tgt, prefix="rel-") relation_data_for_vdb = { relation_id: { "content": content, "src_id": src, "tgt_id": tgt, "source_id": source_id, "description": description, "keywords": keywords, "weight": weight, } } await self.relationships_vdb.upsert(relation_data_for_vdb) # 9. Delete source entities for entity_name in source_entities: if entity_name == target_entity: logger.info( f"Skipping deletion of '{entity_name}' as it's also the target entity" ) continue # Delete entity node from knowledge graph await self.chunk_entity_relation_graph.delete_node(entity_name) # Delete entity record from vector database entity_id = compute_mdhash_id(entity_name, prefix="ent-") await self.entities_vdb.delete([entity_id]) # Also ensure any relationships specific to this entity are deleted from vector DB # This is a safety check, as these should have been transformed to the target entity already entity_relation_prefix = compute_mdhash_id(entity_name, prefix="rel-") relations_with_entity = await self.relationships_vdb.search_by_prefix( entity_relation_prefix ) if relations_with_entity: relation_ids = [r["id"] for r in relations_with_entity] await self.relationships_vdb.delete(relation_ids) logger.info( f"Deleted {len(relation_ids)} relation records for entity '{entity_name}' from vector database" ) logger.info( f"Deleted source entity '{entity_name}' and its vector embedding from database" ) # 10. Save changes await self._merge_entities_done() logger.info( f"Successfully merged {len(source_entities)} entities into '{target_entity}'" ) return await self.get_entity_info(target_entity, include_vector_data=True) except Exception as e: logger.error(f"Error merging entities: {e}") raise async def aexport_data( self, output_path: str, file_format: Literal["csv", "excel", "md", "txt"] = "csv", include_vector_data: bool = False, ) -> None: """ Asynchronously exports all entities, relations, and relationships to various formats. Args: output_path: The path to the output file (including extension). file_format: Output format - "csv", "excel", "md", "txt". - csv: Comma-separated values file - excel: Microsoft Excel file with multiple sheets - md: Markdown tables - txt: Plain text formatted output - table: Print formatted tables to console include_vector_data: Whether to include data from the vector database. """ # Collect data entities_data = [] relations_data = [] relationships_data = [] # --- Entities --- all_entities = await self.chunk_entity_relation_graph.get_all_labels() for entity_name in all_entities: entity_info = await self.get_entity_info( entity_name, include_vector_data=include_vector_data ) entity_row = { "entity_name": entity_name, "source_id": entity_info["source_id"], "graph_data": str( entity_info["graph_data"] ), # Convert to string to ensure compatibility } if include_vector_data and "vector_data" in entity_info: entity_row["vector_data"] = str(entity_info["vector_data"]) entities_data.append(entity_row) # --- Relations --- for src_entity in all_entities: for tgt_entity in all_entities: if src_entity == tgt_entity: continue edge_exists = await self.chunk_entity_relation_graph.has_edge( src_entity, tgt_entity ) if edge_exists: relation_info = await self.get_relation_info( src_entity, tgt_entity, include_vector_data=include_vector_data ) relation_row = { "src_entity": src_entity, "tgt_entity": tgt_entity, "source_id": relation_info["source_id"], "graph_data": str( relation_info["graph_data"] ), # Convert to string } if include_vector_data and "vector_data" in relation_info: relation_row["vector_data"] = str(relation_info["vector_data"]) relations_data.append(relation_row) # --- Relationships (from VectorDB) --- all_relationships = await self.relationships_vdb.client_storage for rel in all_relationships["data"]: relationships_data.append( { "relationship_id": rel["__id__"], "data": str(rel), # Convert to string for compatibility } ) # Export based on format if file_format == "csv": # CSV export with open(output_path, "w", newline="", encoding="utf-8") as csvfile: # Entities if entities_data: csvfile.write("# ENTITIES\n") writer = csv.DictWriter(csvfile, fieldnames=entities_data[0].keys()) writer.writeheader() writer.writerows(entities_data) csvfile.write("\n\n") # Relations if relations_data: csvfile.write("# RELATIONS\n") writer = csv.DictWriter( csvfile, fieldnames=relations_data[0].keys() ) writer.writeheader() writer.writerows(relations_data) csvfile.write("\n\n") # Relationships if relationships_data: csvfile.write("# RELATIONSHIPS\n") writer = csv.DictWriter( csvfile, fieldnames=relationships_data[0].keys() ) writer.writeheader() writer.writerows(relationships_data) elif file_format == "excel": # Excel export entities_df = ( pd.DataFrame(entities_data) if entities_data else pd.DataFrame() ) relations_df = ( pd.DataFrame(relations_data) if relations_data else pd.DataFrame() ) relationships_df = ( pd.DataFrame(relationships_data) if relationships_data else pd.DataFrame() ) with pd.ExcelWriter(output_path, engine="xlsxwriter") as writer: if not entities_df.empty: entities_df.to_excel(writer, sheet_name="Entities", index=False) if not relations_df.empty: relations_df.to_excel(writer, sheet_name="Relations", index=False) if not relationships_df.empty: relationships_df.to_excel( writer, sheet_name="Relationships", index=False ) elif file_format == "md": # Markdown export with open(output_path, "w", encoding="utf-8") as mdfile: mdfile.write("# LightRAG Data Export\n\n") # Entities mdfile.write("## Entities\n\n") if entities_data: # Write header mdfile.write("| " + " | ".join(entities_data[0].keys()) + " |\n") mdfile.write( "| " + " | ".join(["---"] * len(entities_data[0].keys())) + " |\n" ) # Write rows for entity in entities_data: mdfile.write( "| " + " | ".join(str(v) for v in entity.values()) + " |\n" ) mdfile.write("\n\n") else: mdfile.write("*No entity data available*\n\n") # Relations mdfile.write("## Relations\n\n") if relations_data: # Write header mdfile.write("| " + " | ".join(relations_data[0].keys()) + " |\n") mdfile.write( "| " + " | ".join(["---"] * len(relations_data[0].keys())) + " |\n" ) # Write rows for relation in relations_data: mdfile.write( "| " + " | ".join(str(v) for v in relation.values()) + " |\n" ) mdfile.write("\n\n") else: mdfile.write("*No relation data available*\n\n") # Relationships mdfile.write("## Relationships\n\n") if relationships_data: # Write header mdfile.write( "| " + " | ".join(relationships_data[0].keys()) + " |\n" ) mdfile.write( "| " + " | ".join(["---"] * len(relationships_data[0].keys())) + " |\n" ) # Write rows for relationship in relationships_data: mdfile.write( "| " + " | ".join(str(v) for v in relationship.values()) + " |\n" ) else: mdfile.write("*No relationship data available*\n\n") elif file_format == "txt": # Plain text export with open(output_path, "w", encoding="utf-8") as txtfile: txtfile.write("LIGHTRAG DATA EXPORT\n") txtfile.write("=" * 80 + "\n\n") # Entities txtfile.write("ENTITIES\n") txtfile.write("-" * 80 + "\n") if entities_data: # Create fixed width columns col_widths = { k: max(len(k), max(len(str(e[k])) for e in entities_data)) for k in entities_data[0] } header = " ".join(k.ljust(col_widths[k]) for k in entities_data[0]) txtfile.write(header + "\n") txtfile.write("-" * len(header) + "\n") # Write rows for entity in entities_data: row = " ".join( str(v).ljust(col_widths[k]) for k, v in entity.items() ) txtfile.write(row + "\n") txtfile.write("\n\n") else: txtfile.write("No entity data available\n\n") # Relations txtfile.write("RELATIONS\n") txtfile.write("-" * 80 + "\n") if relations_data: # Create fixed width columns col_widths = { k: max(len(k), max(len(str(r[k])) for r in relations_data)) for k in relations_data[0] } header = " ".join( k.ljust(col_widths[k]) for k in relations_data[0] ) txtfile.write(header + "\n") txtfile.write("-" * len(header) + "\n") # Write rows for relation in relations_data: row = " ".join( str(v).ljust(col_widths[k]) for k, v in relation.items() ) txtfile.write(row + "\n") txtfile.write("\n\n") else: txtfile.write("No relation data available\n\n") # Relationships txtfile.write("RELATIONSHIPS\n") txtfile.write("-" * 80 + "\n") if relationships_data: # Create fixed width columns col_widths = { k: max(len(k), max(len(str(r[k])) for r in relationships_data)) for k in relationships_data[0] } header = " ".join( k.ljust(col_widths[k]) for k in relationships_data[0] ) txtfile.write(header + "\n") txtfile.write("-" * len(header) + "\n") # Write rows for relationship in relationships_data: row = " ".join( str(v).ljust(col_widths[k]) for k, v in relationship.items() ) txtfile.write(row + "\n") else: txtfile.write("No relationship data available\n\n") else: raise ValueError( f"Unsupported file format: {file_format}. " f"Choose from: csv, excel, md, txt" ) if file_format is not None: print(f"Data exported to: {output_path} with format: {file_format}") else: print("Data displayed as table format") def export_data( self, output_path: str, file_format: Literal["csv", "excel", "md", "txt"] = "csv", include_vector_data: bool = False, ) -> None: """ Synchronously exports all entities, relations, and relationships to various formats. Args: output_path: The path to the output file (including extension). file_format: Output format - "csv", "excel", "md", "txt". - csv: Comma-separated values file - excel: Microsoft Excel file with multiple sheets - md: Markdown tables - txt: Plain text formatted output - table: Print formatted tables to console include_vector_data: Whether to include data from the vector database. """ try: loop = asyncio.get_event_loop() except RuntimeError: loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) loop.run_until_complete( self.aexport_data(output_path, file_format, include_vector_data) ) def merge_entities( self, source_entities: list[str], target_entity: str, merge_strategy: dict[str, str] = None, target_entity_data: dict[str, Any] = None, ) -> dict[str, Any]: """Synchronously merge multiple entities into one entity. Merges multiple source entities into a target entity, handling all relationships, and updating both the knowledge graph and vector database. Args: source_entities: List of source entity names to merge target_entity: Name of the target entity after merging merge_strategy: Merge strategy configuration, e.g. {"description": "concatenate", "entity_type": "keep_first"} target_entity_data: Dictionary of specific values to set for the target entity, overriding any merged values, e.g. {"description": "custom description", "entity_type": "PERSON"} Returns: Dictionary containing the merged entity information """ loop = always_get_an_event_loop() return loop.run_until_complete( self.amerge_entities( source_entities, target_entity, merge_strategy, target_entity_data ) ) def _merge_entity_attributes( self, entity_data_list: list[dict[str, Any]], merge_strategy: dict[str, str] ) -> dict[str, Any]: """Merge attributes from multiple entities. Args: entity_data_list: List of dictionaries containing entity data merge_strategy: Merge strategy for each field Returns: Dictionary containing merged entity data """ merged_data = {} # Collect all possible keys all_keys = set() for data in entity_data_list: all_keys.update(data.keys()) # Merge values for each key for key in all_keys: # Get all values for this key values = [data.get(key) for data in entity_data_list if data.get(key)] if not values: continue # Merge values according to strategy strategy = merge_strategy.get(key, "keep_first") if strategy == "concatenate": merged_data[key] = "\n\n".join(values) elif strategy == "keep_first": merged_data[key] = values[0] elif strategy == "keep_last": merged_data[key] = values[-1] elif strategy == "join_unique": # Handle fields separated by GRAPH_FIELD_SEP unique_items = set() for value in values: items = value.split(GRAPH_FIELD_SEP) unique_items.update(items) merged_data[key] = GRAPH_FIELD_SEP.join(unique_items) else: # Default strategy merged_data[key] = values[0] return merged_data def _merge_relation_attributes( self, relation_data_list: list[dict[str, Any]], merge_strategy: dict[str, str] ) -> dict[str, Any]: """Merge attributes from multiple relationships. Args: relation_data_list: List of dictionaries containing relationship data merge_strategy: Merge strategy for each field Returns: Dictionary containing merged relationship data """ merged_data = {} # Collect all possible keys all_keys = set() for data in relation_data_list: all_keys.update(data.keys()) # Merge values for each key for key in all_keys: # Get all values for this key values = [ data.get(key) for data in relation_data_list if data.get(key) is not None ] if not values: continue # Merge values according to strategy strategy = merge_strategy.get(key, "keep_first") if strategy == "concatenate": merged_data[key] = "\n\n".join(str(v) for v in values) elif strategy == "keep_first": merged_data[key] = values[0] elif strategy == "keep_last": merged_data[key] = values[-1] elif strategy == "join_unique": # Handle fields separated by GRAPH_FIELD_SEP unique_items = set() for value in values: items = str(value).split(GRAPH_FIELD_SEP) unique_items.update(items) merged_data[key] = GRAPH_FIELD_SEP.join(unique_items) elif strategy == "max": # For numeric fields like weight try: merged_data[key] = max(float(v) for v in values) except (ValueError, TypeError): merged_data[key] = values[0] else: # Default strategy merged_data[key] = values[0] return merged_data async def _merge_entities_done(self) -> None: """Callback after entity merging is complete, ensures updates are persisted""" await asyncio.gather( *[ cast(StorageNameSpace, storage_inst).index_done_callback() for storage_inst in [ # type: ignore self.entities_vdb, self.relationships_vdb, self.chunk_entity_relation_graph, ] ] )