from fastapi import FastAPI, HTTPException, File, UploadFile from fastapi import Query from contextlib import asynccontextmanager from pydantic import BaseModel from typing import Optional, Any import sys import os from pathlib import Path import asyncio import nest_asyncio from lightrag import LightRAG, QueryParam from lightrag.llm.openai import openai_complete_if_cache, openai_embed from lightrag.utils import EmbeddingFunc import numpy as np print(os.getcwd()) script_directory = Path(__file__).resolve().parent.parent sys.path.append(os.path.abspath(script_directory)) # Apply nest_asyncio to solve event loop issues nest_asyncio.apply() DEFAULT_RAG_DIR = "index_default" # We use OpenAI compatible API to call LLM on Oracle Cloud # More docs here https://github.com/jin38324/OCI_GenAI_access_gateway BASE_URL = "http://xxx.xxx.xxx.xxx:8088/v1/" APIKEY = "ocigenerativeai" # Configure working directory WORKING_DIR = os.environ.get("RAG_DIR", f"{DEFAULT_RAG_DIR}") print(f"WORKING_DIR: {WORKING_DIR}") LLM_MODEL = os.environ.get("LLM_MODEL", "cohere.command-r-plus-08-2024") print(f"LLM_MODEL: {LLM_MODEL}") EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "cohere.embed-multilingual-v3.0") print(f"EMBEDDING_MODEL: {EMBEDDING_MODEL}") EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 512)) print(f"EMBEDDING_MAX_TOKEN_SIZE: {EMBEDDING_MAX_TOKEN_SIZE}") if not os.path.exists(WORKING_DIR): os.mkdir(WORKING_DIR) os.environ["ORACLE_USER"] = "" os.environ["ORACLE_PASSWORD"] = "" os.environ["ORACLE_DSN"] = "" os.environ["ORACLE_CONFIG_DIR"] = "path_to_config_dir" os.environ["ORACLE_WALLET_LOCATION"] = "path_to_wallet_location" os.environ["ORACLE_WALLET_PASSWORD"] = "wallet_password" os.environ["ORACLE_WORKSPACE"] = "company" async def llm_model_func( prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs ) -> str: return await openai_complete_if_cache( LLM_MODEL, prompt, system_prompt=system_prompt, history_messages=history_messages, api_key=APIKEY, base_url=BASE_URL, **kwargs, ) async def embedding_func(texts: list[str]) -> np.ndarray: return await openai_embed( texts, model=EMBEDDING_MODEL, api_key=APIKEY, base_url=BASE_URL, ) async def get_embedding_dim(): test_text = ["This is a test sentence."] embedding = await embedding_func(test_text) embedding_dim = embedding.shape[1] return embedding_dim async def init(): # Detect embedding dimension embedding_dimension = await get_embedding_dim() print(f"Detected embedding dimension: {embedding_dimension}") # Create Oracle DB connection # The `config` parameter is the connection configuration of Oracle DB # More docs here https://python-oracledb.readthedocs.io/en/latest/user_guide/connection_handling.html # We storage data in unified tables, so we need to set a `workspace` parameter to specify which docs we want to store and query # Below is an example of how to connect to Oracle Autonomous Database on Oracle Cloud # Initialize LightRAG # We use Oracle DB as the KV/vector/graph storage rag = LightRAG( enable_llm_cache=False, working_dir=WORKING_DIR, chunk_token_size=512, llm_model_func=llm_model_func, embedding_func=EmbeddingFunc( embedding_dim=embedding_dimension, max_token_size=512, func=embedding_func, ), graph_storage="OracleGraphStorage", kv_storage="OracleKVStorage", vector_storage="OracleVectorDBStorage", ) return rag # Extract and Insert into LightRAG storage # with open("./dickens/book.txt", "r", encoding="utf-8") as f: # await rag.ainsert(f.read()) # # Perform search in different modes # modes = ["naive", "local", "global", "hybrid"] # for mode in modes: # print("="*20, mode, "="*20) # print(await rag.aquery("这篇文档是关于什么内容的?", param=QueryParam(mode=mode))) # print("-"*100, "\n") # Data models class QueryRequest(BaseModel): query: str mode: str = "hybrid" only_need_context: bool = False only_need_prompt: bool = False class DataRequest(BaseModel): limit: int = 100 class InsertRequest(BaseModel): text: str class Response(BaseModel): status: str data: Optional[Any] = None message: Optional[str] = None # API routes rag = None @asynccontextmanager async def lifespan(app: FastAPI): global rag rag = await init() print("done!") yield app = FastAPI( title="LightRAG API", description="API for RAG operations", lifespan=lifespan ) @app.post("/query", response_model=Response) async def query_endpoint(request: QueryRequest): # try: # loop = asyncio.get_event_loop() if request.mode == "naive": top_k = 3 else: top_k = 60 result = await rag.aquery( request.query, param=QueryParam( mode=request.mode, only_need_context=request.only_need_context, only_need_prompt=request.only_need_prompt, top_k=top_k, ), ) return Response(status="success", data=result) # except Exception as e: # raise HTTPException(status_code=500, detail=str(e)) @app.get("/data", response_model=Response) async def query_all_nodes(type: str = Query("nodes"), limit: int = Query(100)): if type == "nodes": result = await rag.chunk_entity_relation_graph.get_all_nodes(limit=limit) elif type == "edges": result = await rag.chunk_entity_relation_graph.get_all_edges(limit=limit) elif type == "statistics": result = await rag.chunk_entity_relation_graph.get_statistics() return Response(status="success", data=result) @app.post("/insert", response_model=Response) async def insert_endpoint(request: InsertRequest): try: loop = asyncio.get_event_loop() await loop.run_in_executor(None, lambda: rag.insert(request.text)) return Response(status="success", message="Text inserted successfully") except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.post("/insert_file", response_model=Response) async def insert_file(file: UploadFile = File(...)): try: file_content = await file.read() # Read file content try: content = file_content.decode("utf-8") except UnicodeDecodeError: # If UTF-8 decoding fails, try other encodings content = file_content.decode("gbk") # Insert file content loop = asyncio.get_event_loop() await loop.run_in_executor(None, lambda: rag.insert(content)) return Response( status="success", message=f"File content from {file.filename} inserted successfully", ) except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.get("/health") async def health_check(): return {"status": "healthy"} if __name__ == "__main__": import uvicorn uvicorn.run(app, host="127.0.0.1", port=8020) # Usage example # To run the server, use the following command in your terminal: # python lightrag_api_openai_compatible_demo.py # Example requests: # 1. Query: # curl -X POST "http://127.0.0.1:8020/query" -H "Content-Type: application/json" -d '{"query": "your query here", "mode": "hybrid"}' # 2. Insert text: # curl -X POST "http://127.0.0.1:8020/insert" -H "Content-Type: application/json" -d '{"text": "your text here"}' # 3. Insert file: # curl -X POST "http://127.0.0.1:8020/insert_file" -H "Content-Type: multipart/form-data" -F "file=@path/to/your/file.txt" # 4. Health check: # curl -X GET "http://127.0.0.1:8020/health"