import os import asyncio from lightrag import LightRAG, QueryParam from lightrag.llm.openai import gpt_4o_mini_complete, gpt_4o_complete, openai_embed from lightrag.kg.shared_storage import initialize_pipeline_status from lightrag.utils import setup_logger setup_logger("lightrag", level="INFO") WORKING_DIR = "./all_modes_demo" if not os.path.exists(WORKING_DIR): os.mkdir(WORKING_DIR) async def initialize_rag(): # Initialize LightRAG with a base model (gpt-4o-mini) rag = LightRAG( working_dir=WORKING_DIR, embedding_func=openai_embed, llm_model_func=gpt_4o_mini_complete, # Default model for most queries ) await rag.initialize_storages() await initialize_pipeline_status() return rag def main(): # Initialize RAG instance rag = asyncio.run(initialize_rag()) # Load the data with open("./book.txt", "r", encoding="utf-8") as f: rag.insert(f.read()) # Example query query_text = "What are the main themes in this story?" # Demonstrate using default model (gpt-4o-mini) for all modes print("\n===== Default Model (gpt-4o-mini) =====") for mode in ["local", "global", "hybrid", "naive", "mix"]: print(f"\n--- {mode.upper()} mode with default model ---") response = rag.query( query_text, param=QueryParam(mode=mode) ) print(response) # Demonstrate using custom model (gpt-4o) for all modes print("\n===== Custom Model (gpt-4o) =====") for mode in ["local", "global", "hybrid", "naive", "mix"]: print(f"\n--- {mode.upper()} mode with custom model ---") response = rag.query( query_text, param=QueryParam( mode=mode, model_func=gpt_4o_complete # Override with more capable model ) ) print(response) # Mixed approach - use different models for different modes print("\n===== Strategic Model Selection =====") # Complex analytical question complex_query = "How does the character development in the story reflect Victorian-era social values?" # Use default model for simpler modes print("\n--- NAIVE mode with default model (suitable for simple retrieval) ---") response1 = rag.query( complex_query, param=QueryParam(mode="naive") # Use default model for basic retrieval ) print(response1) # Use more capable model for complex modes print("\n--- HYBRID mode with more capable model (for complex analysis) ---") response2 = rag.query( complex_query, param=QueryParam( mode="hybrid", model_func=gpt_4o_complete # Use more capable model for complex analysis ) ) print(response2) if __name__ == "__main__": main()