import asyncio import os from typing import Any, final from dataclasses import dataclass import numpy as np import hashlib import uuid from ..utils import logger from ..base import BaseVectorStorage import configparser config = configparser.ConfigParser() config.read("config.ini", "utf-8") import pipmaster as pm if not pm.is_installed("qdrant-client"): pm.install("qdrant-client") from qdrant_client import QdrantClient, models def compute_mdhash_id_for_qdrant( content: str, prefix: str = "", style: str = "simple" ) -> str: """ Generate a UUID based on the content and support multiple formats. :param content: The content used to generate the UUID. :param style: The format of the UUID, optional values are "simple", "hyphenated", "urn". :return: A UUID that meets the requirements of Qdrant. """ if not content: raise ValueError("Content must not be empty.") # Use the hash value of the content to create a UUID. hashed_content = hashlib.sha256((prefix + content).encode("utf-8")).digest() generated_uuid = uuid.UUID(bytes=hashed_content[:16], version=4) # Return the UUID according to the specified format. if style == "simple": return generated_uuid.hex elif style == "hyphenated": return str(generated_uuid) elif style == "urn": return f"urn:uuid:{generated_uuid}" else: raise ValueError("Invalid style. Choose from 'simple', 'hyphenated', or 'urn'.") @final @dataclass class QdrantVectorDBStorage(BaseVectorStorage): @staticmethod def create_collection_if_not_exist( client: QdrantClient, collection_name: str, **kwargs ): if client.collection_exists(collection_name): return client.create_collection(collection_name, **kwargs) def __post_init__(self): kwargs = self.global_config.get("vector_db_storage_cls_kwargs", {}) cosine_threshold = kwargs.get("cosine_better_than_threshold") if cosine_threshold is None: raise ValueError( "cosine_better_than_threshold must be specified in vector_db_storage_cls_kwargs" ) self.cosine_better_than_threshold = cosine_threshold self._client = QdrantClient( url=os.environ.get( "QDRANT_URL", config.get("qdrant", "uri", fallback=None) ), api_key=os.environ.get( "QDRANT_API_KEY", config.get("qdrant", "apikey", fallback=None) ), ) self._max_batch_size = self.global_config["embedding_batch_num"] QdrantVectorDBStorage.create_collection_if_not_exist( self._client, self.namespace, vectors_config=models.VectorParams( size=self.embedding_func.embedding_dim, distance=models.Distance.COSINE ), ) async def upsert(self, data: dict[str, dict[str, Any]]) -> None: if not len(data): logger.warning("You insert an empty data to vector DB") return [] list_data = [ { "id": k, **{k1: v1 for k1, v1 in v.items() if k1 in self.meta_fields}, } for k, v in data.items() ] contents = [v["content"] for v in data.values()] batches = [ contents[i : i + self._max_batch_size] for i in range(0, len(contents), self._max_batch_size) ] embedding_tasks = [self.embedding_func(batch) for batch in batches] embeddings_list = await asyncio.gather(*embedding_tasks) embeddings = np.concatenate(embeddings_list) list_points = [] for i, d in enumerate(list_data): list_points.append( models.PointStruct( id=compute_mdhash_id_for_qdrant(d["id"]), vector=embeddings[i], payload=d, ) ) results = self._client.upsert( collection_name=self.namespace, points=list_points, wait=True ) return results async def query(self, query: str, top_k: int) -> list[dict[str, Any]]: embedding = await self.embedding_func([query]) results = self._client.search( collection_name=self.namespace, query_vector=embedding[0], limit=top_k, with_payload=True, score_threshold=self.cosine_better_than_threshold, ) logger.debug(f"query result: {results}") return [{**dp.payload, "id": dp.id, "distance": dp.score} for dp in results] async def index_done_callback(self) -> None: # Qdrant handles persistence automatically pass async def delete_entity(self, entity_name: str) -> None: raise NotImplementedError async def delete_entity_relation(self, entity_name: str) -> None: raise NotImplementedError