import os import pipmaster as pm # Pipmaster for dynamic library install # install specific modules if not pm.is_installed("aiohttp"): pm.install("aiohttp") if not pm.is_installed("tenacity"): pm.install("tenacity") import numpy as np import aiohttp from tenacity import ( retry, stop_after_attempt, wait_exponential, retry_if_exception_type, ) from lightrag.utils import wrap_embedding_func_with_attrs, logger async def fetch_data(url, headers, data): async with aiohttp.ClientSession() as session: async with session.post(url, headers=headers, json=data) as response: if response.status != 200: error_text = await response.text() logger.error(f"Jina API error {response.status}: {error_text}") raise aiohttp.ClientResponseError( request_info=response.request_info, history=response.history, status=response.status, message=f"Jina API error: {error_text}", ) response_json = await response.json() data_list = response_json.get("data", []) return data_list @wrap_embedding_func_with_attrs(embedding_dim=2048) @retry( stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=60), retry=( retry_if_exception_type(aiohttp.ClientError) | retry_if_exception_type(aiohttp.ClientResponseError) ), ) async def jina_embed( texts: list[str], dimensions: int = 2048, late_chunking: bool = False, base_url: str = None, api_key: str = None, ) -> np.ndarray: """Generate embeddings for a list of texts using Jina AI's API. Args: texts: List of texts to embed. dimensions: The embedding dimensions (default: 2048 for jina-embeddings-v4). late_chunking: Whether to use late chunking. base_url: Optional base URL for the Jina API. api_key: Optional Jina API key. If None, uses the JINA_API_KEY environment variable. Returns: A numpy array of embeddings, one per input text. Raises: aiohttp.ClientError: If there is a connection error with the Jina API. aiohttp.ClientResponseError: If the Jina API returns an error response. """ if api_key: os.environ["JINA_API_KEY"] = api_key if "JINA_API_KEY" not in os.environ: raise ValueError("JINA_API_KEY environment variable is required") url = base_url or "https://api.jina.ai/v1/embeddings" headers = { "Content-Type": "application/json", "Authorization": f"Bearer {os.environ['JINA_API_KEY']}", } data = { "model": "jina-embeddings-v4", "task": "text-matching", "dimensions": dimensions, "input": texts, } # Only add optional parameters if they have non-default values if late_chunking: data["late_chunking"] = late_chunking logger.debug( f"Jina embedding request: {len(texts)} texts, dimensions: {dimensions}" ) try: data_list = await fetch_data(url, headers, data) if not data_list: logger.error("Jina API returned empty data list") raise ValueError("Jina API returned empty data list") if len(data_list) != len(texts): logger.error( f"Jina API returned {len(data_list)} embeddings for {len(texts)} texts" ) raise ValueError( f"Jina API returned {len(data_list)} embeddings for {len(texts)} texts" ) embeddings = np.array([dp["embedding"] for dp in data_list]) logger.debug(f"Jina embeddings generated: shape {embeddings.shape}") return embeddings except Exception as e: logger.error(f"Jina embedding error: {e}") raise