from fastapi import FastAPI, HTTPException, File, UploadFile, Form from pydantic import BaseModel import logging import argparse from lightrag import LightRAG, QueryParam from lightrag.llm import lollms_model_complete, lollms_embed from lightrag.utils import EmbeddingFunc from typing import Optional, List from enum import Enum from pathlib import Path import shutil import aiofiles from ascii_colors import trace_exception from fastapi import FastAPI, HTTPException import os from typing import Optional from fastapi import FastAPI, Depends, HTTPException, Security from fastapi.security import APIKeyHeader import os import argparse from typing import Optional from fastapi.middleware.cors import CORSMiddleware from starlette.status import HTTP_403_FORBIDDEN from fastapi import HTTPException def parse_args(): parser = argparse.ArgumentParser( description="LightRAG FastAPI Server with separate working and input directories" ) # Server configuration parser.add_argument( "--host", default="0.0.0.0", help="Server host (default: 0.0.0.0)" ) parser.add_argument( "--port", type=int, default=9621, help="Server port (default: 9621)" ) # Directory configuration parser.add_argument( "--working-dir", default="./rag_storage", help="Working directory for RAG storage (default: ./rag_storage)", ) parser.add_argument( "--input-dir", default="./inputs", help="Directory containing input documents (default: ./inputs)", ) # Model configuration parser.add_argument( "--model", default="mistral-nemo:latest", help="LLM model name (default: mistral-nemo:latest)", ) parser.add_argument( "--embedding-model", default="bge-m3:latest", help="Embedding model name (default: bge-m3:latest)", ) parser.add_argument( "--lollms-host", default="http://localhost:9600", help="lollms host URL (default: http://localhost:9600)", ) # RAG configuration parser.add_argument( "--max-async", type=int, default=4, help="Maximum async operations (default: 4)" ) parser.add_argument( "--max-tokens", type=int, default=32768, help="Maximum token size (default: 32768)", ) parser.add_argument( "--embedding-dim", type=int, default=1024, help="Embedding dimensions (default: 1024)", ) parser.add_argument( "--max-embed-tokens", type=int, default=8192, help="Maximum embedding token size (default: 8192)", ) # Logging configuration parser.add_argument( "--log-level", default="INFO", choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"], help="Logging level (default: INFO)", ) parser.add_argument('--key', type=str, help='API key for authentication. This protects lightrag server against unauthorized access', default=None) return parser.parse_args() class DocumentManager: """Handles document operations and tracking""" def __init__(self, input_dir: str, supported_extensions: tuple = (".txt", ".md")): self.input_dir = Path(input_dir) self.supported_extensions = supported_extensions self.indexed_files = set() # Create input directory if it doesn't exist self.input_dir.mkdir(parents=True, exist_ok=True) def scan_directory(self) -> List[Path]: """Scan input directory for new files""" new_files = [] for ext in self.supported_extensions: for file_path in self.input_dir.rglob(f"*{ext}"): if file_path not in self.indexed_files: new_files.append(file_path) return new_files def mark_as_indexed(self, file_path: Path): """Mark a file as indexed""" self.indexed_files.add(file_path) def is_supported_file(self, filename: str) -> bool: """Check if file type is supported""" return any(filename.lower().endswith(ext) for ext in self.supported_extensions) # Pydantic models class SearchMode(str, Enum): naive = "naive" local = "local" global_ = "global" hybrid = "hybrid" class QueryRequest(BaseModel): query: str mode: SearchMode = SearchMode.hybrid stream: bool = False only_need_context: bool = False class QueryResponse(BaseModel): response: str class InsertTextRequest(BaseModel): text: str description: Optional[str] = None class InsertResponse(BaseModel): status: str message: str document_count: int def get_api_key_dependency(api_key: Optional[str]): if not api_key: # If no API key is configured, return a dummy dependency that always succeeds async def no_auth(): return None return no_auth # If API key is configured, use proper authentication api_key_header = APIKeyHeader(name="X-API-Key", auto_error=False) async def api_key_auth(api_key_header_value: str | None = Security(api_key_header)): if not api_key_header_value: raise HTTPException( status_code=HTTP_403_FORBIDDEN, detail="API Key required" ) if api_key_header_value != api_key: raise HTTPException( status_code=HTTP_403_FORBIDDEN, detail="Invalid API Key" ) return api_key_header_value return api_key_auth def create_app(args): # Setup logging logging.basicConfig( format="%(levelname)s:%(message)s", level=getattr(logging, args.log_level) ) # Check if API key is provided either through env var or args api_key = os.getenv("LIGHTRAG_API_KEY") or args.key # Initialize FastAPI app = FastAPI( title="LightRAG API", description="API for querying text using LightRAG with separate storage and input directories"+"(With authentication)" if api_key else "", version="1.0.0", openapi_tags=[{"name": "api"}] ) # Add CORS middleware app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # Create the optional API key dependency optional_api_key = get_api_key_dependency(api_key) # Create working directory if it doesn't exist Path(args.working_dir).mkdir(parents=True, exist_ok=True) # Initialize document manager doc_manager = DocumentManager(args.input_dir) # Initialize RAG rag = LightRAG( working_dir=args.working_dir, llm_model_func=lollms_model_complete, llm_model_name=args.model, llm_model_max_async=args.max_async, llm_model_max_token_size=args.max_tokens, llm_model_kwargs={ "host": args.lollms_host, "options": {"num_ctx": args.max_tokens}, }, embedding_func=EmbeddingFunc( embedding_dim=args.embedding_dim, max_token_size=args.max_embed_tokens, func=lambda texts: lollms_embed( texts, embed_model=args.embedding_model, host=args.lollms_host ), ), ) @app.on_event("startup") async def startup_event(): """Index all files in input directory during startup""" try: new_files = doc_manager.scan_directory() for file_path in new_files: try: # Use async file reading async with aiofiles.open(file_path, "r", encoding="utf-8") as f: content = await f.read() # Use the async version of insert directly await rag.ainsert(content) doc_manager.mark_as_indexed(file_path) logging.info(f"Indexed file: {file_path}") except Exception as e: trace_exception(e) logging.error(f"Error indexing file {file_path}: {str(e)}") logging.info(f"Indexed {len(new_files)} documents from {args.input_dir}") except Exception as e: logging.error(f"Error during startup indexing: {str(e)}") @app.post("/documents/scan", dependencies=[Depends(optional_api_key)]) async def scan_for_new_documents(): """Manually trigger scanning for new documents""" try: new_files = doc_manager.scan_directory() indexed_count = 0 for file_path in new_files: try: with open(file_path, "r", encoding="utf-8") as f: content = f.read() await rag.ainsert(content) doc_manager.mark_as_indexed(file_path) indexed_count += 1 except Exception as e: logging.error(f"Error indexing file {file_path}: {str(e)}") return { "status": "success", "indexed_count": indexed_count, "total_documents": len(doc_manager.indexed_files), } except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.post("/documents/upload", dependencies=[Depends(optional_api_key)]) async def upload_to_input_dir(file: UploadFile = File(...)): """Upload a file to the input directory""" try: if not doc_manager.is_supported_file(file.filename): raise HTTPException( status_code=400, detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}", ) file_path = doc_manager.input_dir / file.filename with open(file_path, "wb") as buffer: shutil.copyfileobj(file.file, buffer) # Immediately index the uploaded file with open(file_path, "r", encoding="utf-8") as f: content = f.read() await rag.ainsert(content) doc_manager.mark_as_indexed(file_path) return { "status": "success", "message": f"File uploaded and indexed: {file.filename}", "total_documents": len(doc_manager.indexed_files), } except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.post("/query", response_model=QueryResponse, dependencies=[Depends(optional_api_key)]) async def query_text(request: QueryRequest): try: response = await rag.aquery( request.query, param=QueryParam( mode=request.mode, stream=request.stream, only_need_context=request.only_need_context, ), ) if request.stream: result = "" async for chunk in response: result += chunk return QueryResponse(response=result) else: return QueryResponse(response=response) except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.post("/query/stream", dependencies=[Depends(optional_api_key)]) async def query_text_stream(request: QueryRequest): try: response = rag.query( request.query, param=QueryParam( mode=request.mode, stream=True, only_need_context=request.only_need_context, ), ) async def stream_generator(): async for chunk in response: yield chunk return stream_generator() except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.post("/documents/text", response_model=InsertResponse, dependencies=[Depends(optional_api_key)]) async def insert_text(request: InsertTextRequest): try: rag.insert(request.text) return InsertResponse( status="success", message="Text successfully inserted", document_count=len(rag), ) except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.post("/documents/file", response_model=InsertResponse, dependencies=[Depends(optional_api_key)]) async def insert_file(file: UploadFile = File(...), description: str = Form(None)): try: content = await file.read() if file.filename.endswith((".txt", ".md")): text = content.decode("utf-8") await rag.ainsert(text) else: raise HTTPException( status_code=400, detail="Unsupported file type. Only .txt and .md files are supported", ) return InsertResponse( status="success", message=f"File '{file.filename}' successfully inserted", document_count=1, ) except UnicodeDecodeError: raise HTTPException(status_code=400, detail="File encoding not supported") except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.post("/documents/batch", response_model=InsertResponse, dependencies=[Depends(optional_api_key)]) async def insert_batch(files: List[UploadFile] = File(...)): try: inserted_count = 0 failed_files = [] for file in files: try: content = await file.read() if file.filename.endswith((".txt", ".md")): text = content.decode("utf-8") await rag.ainsert(text) inserted_count += 1 else: failed_files.append(f"{file.filename} (unsupported type)") except Exception as e: failed_files.append(f"{file.filename} ({str(e)})") status_message = f"Successfully inserted {inserted_count} documents" if failed_files: status_message += f". Failed files: {', '.join(failed_files)}" return InsertResponse( status="success" if inserted_count > 0 else "partial_success", message=status_message, document_count=len(files), ) except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.delete("/documents", response_model=InsertResponse, dependencies=[Depends(optional_api_key)]) async def clear_documents(): try: rag.text_chunks = [] rag.entities_vdb = None rag.relationships_vdb = None return InsertResponse( status="success", message="All documents cleared successfully", document_count=0, ) except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.get("/health", dependencies=[Depends(optional_api_key)]) async def get_status(): """Get current system status""" return { "status": "healthy", "working_directory": str(args.working_dir), "input_directory": str(args.input_dir), "indexed_files": len(doc_manager.indexed_files), "configuration": { "model": args.model, "embedding_model": args.embedding_model, "max_tokens": args.max_tokens, "lollms_host": args.lollms_host, }, } return app def main(): args = parse_args() import uvicorn app = create_app(args) uvicorn.run(app, host=args.host, port=args.port) if __name__ == "__main__": main()