import os import copy import json import aioboto3 import numpy as np import ollama from openai import AsyncOpenAI, APIConnectionError, RateLimitError, Timeout from tenacity import ( retry, stop_after_attempt, wait_exponential, retry_if_exception_type, ) from transformers import AutoTokenizer, AutoModelForCausalLM import torch from .base import BaseKVStorage from .utils import compute_args_hash, wrap_embedding_func_with_attrs os.environ["TOKENIZERS_PARALLELISM"] = "false" @retry( stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10), retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)), ) async def openai_complete_if_cache( model, prompt, system_prompt=None, history_messages=[], base_url=None, api_key=None, **kwargs, ) -> str: if api_key: os.environ["OPENAI_API_KEY"] = api_key openai_async_client = ( AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url) ) hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None) messages = [] if system_prompt: messages.append({"role": "system", "content": system_prompt}) messages.extend(history_messages) messages.append({"role": "user", "content": prompt}) if hashing_kv is not None: args_hash = compute_args_hash(model, messages) if_cache_return = await hashing_kv.get_by_id(args_hash) if if_cache_return is not None: return if_cache_return["return"] response = await openai_async_client.chat.completions.create( model=model, messages=messages, **kwargs ) if hashing_kv is not None: await hashing_kv.upsert( {args_hash: {"return": response.choices[0].message.content, "model": model}} ) return response.choices[0].message.content class BedrockError(Exception): """Generic error for issues related to Amazon Bedrock""" @retry( stop=stop_after_attempt(5), wait=wait_exponential(multiplier=1, max=60), retry=retry_if_exception_type((BedrockError)), ) async def bedrock_complete_if_cache( model, prompt, system_prompt=None, history_messages=[], aws_access_key_id=None, aws_secret_access_key=None, aws_session_token=None, **kwargs, ) -> str: os.environ["AWS_ACCESS_KEY_ID"] = os.environ.get( "AWS_ACCESS_KEY_ID", aws_access_key_id ) os.environ["AWS_SECRET_ACCESS_KEY"] = os.environ.get( "AWS_SECRET_ACCESS_KEY", aws_secret_access_key ) os.environ["AWS_SESSION_TOKEN"] = os.environ.get( "AWS_SESSION_TOKEN", aws_session_token ) # Fix message history format messages = [] for history_message in history_messages: message = copy.copy(history_message) message["content"] = [{"text": message["content"]}] messages.append(message) # Add user prompt messages.append({"role": "user", "content": [{"text": prompt}]}) # Initialize Converse API arguments args = {"modelId": model, "messages": messages} # Define system prompt if system_prompt: args["system"] = [{"text": system_prompt}] # Map and set up inference parameters inference_params_map = { "max_tokens": "maxTokens", "top_p": "topP", "stop_sequences": "stopSequences", } if inference_params := list( set(kwargs) & set(["max_tokens", "temperature", "top_p", "stop_sequences"]) ): args["inferenceConfig"] = {} for param in inference_params: args["inferenceConfig"][inference_params_map.get(param, param)] = ( kwargs.pop(param) ) hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None) if hashing_kv is not None: args_hash = compute_args_hash(model, messages) if_cache_return = await hashing_kv.get_by_id(args_hash) if if_cache_return is not None: return if_cache_return["return"] # Call model via Converse API session = aioboto3.Session() async with session.client("bedrock-runtime") as bedrock_async_client: try: response = await bedrock_async_client.converse(**args, **kwargs) except Exception as e: raise BedrockError(e) if hashing_kv is not None: await hashing_kv.upsert( { args_hash: { "return": response["output"]["message"]["content"][0]["text"], "model": model, } } ) return response["output"]["message"]["content"][0]["text"] async def hf_model_if_cache( model, prompt, system_prompt=None, history_messages=[], **kwargs ) -> str: model_name = model hf_tokenizer = AutoTokenizer.from_pretrained(model_name, device_map="auto") if hf_tokenizer.pad_token is None: # print("use eos token") hf_tokenizer.pad_token = hf_tokenizer.eos_token hf_model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto") hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None) messages = [] if system_prompt: messages.append({"role": "system", "content": system_prompt}) messages.extend(history_messages) messages.append({"role": "user", "content": prompt}) if hashing_kv is not None: args_hash = compute_args_hash(model, messages) if_cache_return = await hashing_kv.get_by_id(args_hash) if if_cache_return is not None: return if_cache_return["return"] input_prompt = "" try: input_prompt = hf_tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) except Exception: try: ori_message = copy.deepcopy(messages) if messages[0]["role"] == "system": messages[1]["content"] = ( "" + messages[0]["content"] + "\n" + messages[1]["content"] ) messages = messages[1:] input_prompt = hf_tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) except Exception: len_message = len(ori_message) for msgid in range(len_message): input_prompt = ( input_prompt + "<" + ori_message[msgid]["role"] + ">" + ori_message[msgid]["content"] + "\n" ) input_ids = hf_tokenizer( input_prompt, return_tensors="pt", padding=True, truncation=True ).to("cuda") output = hf_model.generate( **input_ids, max_new_tokens=200, num_return_sequences=1, early_stopping=True ) response_text = hf_tokenizer.decode(output[0], skip_special_tokens=True) if hashing_kv is not None: await hashing_kv.upsert({args_hash: {"return": response_text, "model": model}}) return response_text async def ollama_model_if_cache( model, prompt, system_prompt=None, history_messages=[], **kwargs ) -> str: kwargs.pop("max_tokens", None) kwargs.pop("response_format", None) ollama_client = ollama.AsyncClient() messages = [] if system_prompt: messages.append({"role": "system", "content": system_prompt}) hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None) messages.extend(history_messages) messages.append({"role": "user", "content": prompt}) if hashing_kv is not None: args_hash = compute_args_hash(model, messages) if_cache_return = await hashing_kv.get_by_id(args_hash) if if_cache_return is not None: return if_cache_return["return"] response = await ollama_client.chat(model=model, messages=messages, **kwargs) result = response["message"]["content"] if hashing_kv is not None: await hashing_kv.upsert({args_hash: {"return": result, "model": model}}) return result async def gpt_4o_complete( prompt, system_prompt=None, history_messages=[], **kwargs ) -> str: return await openai_complete_if_cache( "gpt-4o", prompt, system_prompt=system_prompt, history_messages=history_messages, **kwargs, ) async def gpt_4o_mini_complete( prompt, system_prompt=None, history_messages=[], **kwargs ) -> str: return await openai_complete_if_cache( "gpt-4o-mini", prompt, system_prompt=system_prompt, history_messages=history_messages, **kwargs, ) async def bedrock_complete( prompt, system_prompt=None, history_messages=[], **kwargs ) -> str: return await bedrock_complete_if_cache( "anthropic.claude-3-haiku-20240307-v1:0", prompt, system_prompt=system_prompt, history_messages=history_messages, **kwargs, ) async def hf_model_complete( prompt, system_prompt=None, history_messages=[], **kwargs ) -> str: model_name = kwargs["hashing_kv"].global_config["llm_model_name"] return await hf_model_if_cache( model_name, prompt, system_prompt=system_prompt, history_messages=history_messages, **kwargs, ) async def ollama_model_complete( prompt, system_prompt=None, history_messages=[], **kwargs ) -> str: model_name = kwargs["hashing_kv"].global_config["llm_model_name"] return await ollama_model_if_cache( model_name, prompt, system_prompt=system_prompt, history_messages=history_messages, **kwargs, ) @wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8192) @retry( stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10), retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)), ) async def openai_embedding( texts: list[str], model: str = "text-embedding-3-small", base_url: str = None, api_key: str = None, ) -> np.ndarray: if api_key: os.environ["OPENAI_API_KEY"] = api_key openai_async_client = ( AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url) ) response = await openai_async_client.embeddings.create( model=model, input=texts, encoding_format="float" ) return np.array([dp.embedding for dp in response.data]) # @wrap_embedding_func_with_attrs(embedding_dim=1024, max_token_size=8192) # @retry( # stop=stop_after_attempt(3), # wait=wait_exponential(multiplier=1, min=4, max=10), # retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)), # TODO: fix exceptions # ) async def bedrock_embedding( texts: list[str], model: str = "amazon.titan-embed-text-v2:0", aws_access_key_id=None, aws_secret_access_key=None, aws_session_token=None, ) -> np.ndarray: os.environ["AWS_ACCESS_KEY_ID"] = os.environ.get( "AWS_ACCESS_KEY_ID", aws_access_key_id ) os.environ["AWS_SECRET_ACCESS_KEY"] = os.environ.get( "AWS_SECRET_ACCESS_KEY", aws_secret_access_key ) os.environ["AWS_SESSION_TOKEN"] = os.environ.get( "AWS_SESSION_TOKEN", aws_session_token ) session = aioboto3.Session() async with session.client("bedrock-runtime") as bedrock_async_client: if (model_provider := model.split(".")[0]) == "amazon": embed_texts = [] for text in texts: if "v2" in model: body = json.dumps( { "inputText": text, # 'dimensions': embedding_dim, "embeddingTypes": ["float"], } ) elif "v1" in model: body = json.dumps({"inputText": text}) else: raise ValueError(f"Model {model} is not supported!") response = await bedrock_async_client.invoke_model( modelId=model, body=body, accept="application/json", contentType="application/json", ) response_body = await response.get("body").json() embed_texts.append(response_body["embedding"]) elif model_provider == "cohere": body = json.dumps( {"texts": texts, "input_type": "search_document", "truncate": "NONE"} ) response = await bedrock_async_client.invoke_model( model=model, body=body, accept="application/json", contentType="application/json", ) response_body = json.loads(response.get("body").read()) embed_texts = response_body["embeddings"] else: raise ValueError(f"Model provider '{model_provider}' is not supported!") return np.array(embed_texts) async def hf_embedding(texts: list[str], tokenizer, embed_model) -> np.ndarray: input_ids = tokenizer( texts, return_tensors="pt", padding=True, truncation=True ).input_ids with torch.no_grad(): outputs = embed_model(input_ids) embeddings = outputs.last_hidden_state.mean(dim=1) return embeddings.detach().numpy() async def ollama_embedding(texts: list[str], embed_model) -> np.ndarray: embed_text = [] for text in texts: data = ollama.embeddings(model=embed_model, prompt=text) embed_text.append(data["embedding"]) return embed_text if __name__ == "__main__": import asyncio async def main(): result = await gpt_4o_mini_complete("How are you?") print(result) asyncio.run(main())