import os from lightrag import LightRAG, QueryParam from lightrag.llm.hf import hf_model_complete, hf_embed from lightrag.utils import EmbeddingFunc from transformers import AutoModel, AutoTokenizer from lightrag.kg.shared_storage import initialize_pipeline_status import asyncio import nest_asyncio nest_asyncio.apply() WORKING_DIR = "./dickens" if not os.path.exists(WORKING_DIR): os.mkdir(WORKING_DIR) async def initialize_rag(): rag = LightRAG( working_dir=WORKING_DIR, llm_model_func=hf_model_complete, llm_model_name="meta-llama/Llama-3.1-8B-Instruct", embedding_func=EmbeddingFunc( embedding_dim=384, max_token_size=5000, func=lambda texts: hf_embed( texts, tokenizer=AutoTokenizer.from_pretrained( "sentence-transformers/all-MiniLM-L6-v2" ), embed_model=AutoModel.from_pretrained( "sentence-transformers/all-MiniLM-L6-v2" ), ), ), ) await rag.initialize_storages() await initialize_pipeline_status() return rag def main(): rag = asyncio.run(initialize_rag()) with open("./book.txt", "r", encoding="utf-8") as f: rag.insert(f.read()) # Perform naive search print( rag.query( "What are the top themes in this story?", param=QueryParam(mode="naive") ) ) # Perform local search print( rag.query( "What are the top themes in this story?", param=QueryParam(mode="local") ) ) # Perform global search print( rag.query( "What are the top themes in this story?", param=QueryParam(mode="global") ) ) # Perform hybrid search print( rag.query( "What are the top themes in this story?", param=QueryParam(mode="hybrid") ) ) if __name__ == "__main__": main()