import os import asyncio from lightrag import LightRAG, QueryParam from lightrag.llm.ollama import ollama_embed, openai_complete_if_cache from lightrag.utils import EmbeddingFunc from lightrag.kg.shared_storage import initialize_pipeline_status # WorkingDir ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) WORKING_DIR = os.path.join(ROOT_DIR, "myKG") if not os.path.exists(WORKING_DIR): os.mkdir(WORKING_DIR) print(f"WorkingDir: {WORKING_DIR}") # redis os.environ["REDIS_URI"] = "redis://localhost:6379" # neo4j BATCH_SIZE_NODES = 500 BATCH_SIZE_EDGES = 100 os.environ["NEO4J_URI"] = "bolt://117.50.173.35:7687" os.environ["NEO4J_USERNAME"] = "neo4j" os.environ["NEO4J_PASSWORD"] = "12345678" # milvus os.environ["MILVUS_URI"] = "http://117.50.173.35:19530" os.environ["MILVUS_USER"] = "root" os.environ["MILVUS_PASSWORD"] = "Milvus" os.environ["MILVUS_DB_NAME"] = "lightrag" async def llm_model_func( prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs ) -> str: return await openai_complete_if_cache( "deepseek-chat", prompt, system_prompt=system_prompt, history_messages=history_messages, api_key="", base_url="", **kwargs, ) embedding_func = EmbeddingFunc( embedding_dim=768, max_token_size=512, func=lambda texts: ollama_embed( texts, embed_model="shaw/dmeta-embedding-zh", host="http://117.50.173.35:11434" ), ) async def initialize_rag(): rag = LightRAG( working_dir=WORKING_DIR, llm_model_func=llm_model_func, llm_model_max_token_size=32768, embedding_func=embedding_func, chunk_token_size=512, chunk_overlap_token_size=256, kv_storage="RedisKVStorage", graph_storage="Neo4JStorage", vector_storage="MilvusVectorDBStorage", doc_status_storage="RedisKVStorage", ) await rag.initialize_storages() await initialize_pipeline_status() return rag def main(): # Initialize RAG instance rag = asyncio.run(initialize_rag()) with open("./book.txt", "r", encoding="utf-8") as f: rag.insert(f.read()) # Perform naive search print( rag.query( "What are the top themes in this story?", param=QueryParam(mode="naive") ) ) # Perform local search print( rag.query( "What are the top themes in this story?", param=QueryParam(mode="local") ) ) # Perform global search print( rag.query( "What are the top themes in this story?", param=QueryParam(mode="global") ) ) # Perform hybrid search print( rag.query( "What are the top themes in this story?", param=QueryParam(mode="hybrid") ) ) if __name__ == "__main__": main()