import sys if sys.version_info < (3, 9): from typing import AsyncIterator else: from collections.abc import AsyncIterator import pipmaster as pm # Pipmaster for dynamic library install if not pm.is_installed("aiohttp"): pm.install("aiohttp") import aiohttp from tenacity import ( retry, stop_after_attempt, wait_exponential, retry_if_exception_type, ) from lightrag.exceptions import ( APIConnectionError, RateLimitError, APITimeoutError, ) from typing import Union, List import numpy as np @retry( stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10), retry=retry_if_exception_type( (RateLimitError, APIConnectionError, APITimeoutError) ), ) async def lollms_model_if_cache( model, prompt, system_prompt=None, history_messages=[], base_url="http://localhost:9600", **kwargs, ) -> Union[str, AsyncIterator[str]]: """Client implementation for lollms generation.""" stream = True if kwargs.get("stream") else False api_key = kwargs.pop("api_key", None) headers = ( {"Content-Type": "application/json", "Authorization": f"Bearer {api_key}"} if api_key else {"Content-Type": "application/json"} ) # Extract lollms specific parameters request_data = { "prompt": prompt, "model_name": model, "personality": kwargs.get("personality", -1), "n_predict": kwargs.get("n_predict", None), "stream": stream, "temperature": kwargs.get("temperature", 0.1), "top_k": kwargs.get("top_k", 50), "top_p": kwargs.get("top_p", 0.95), "repeat_penalty": kwargs.get("repeat_penalty", 0.8), "repeat_last_n": kwargs.get("repeat_last_n", 40), "seed": kwargs.get("seed", None), "n_threads": kwargs.get("n_threads", 8), } # Prepare the full prompt including history full_prompt = "" if system_prompt: full_prompt += f"{system_prompt}\n" for msg in history_messages: full_prompt += f"{msg['role']}: {msg['content']}\n" full_prompt += prompt request_data["prompt"] = full_prompt timeout = aiohttp.ClientTimeout(total=kwargs.get("timeout", None)) async with aiohttp.ClientSession(timeout=timeout, headers=headers) as session: if stream: async def inner(): async with session.post( f"{base_url}/lollms_generate", json=request_data ) as response: async for line in response.content: yield line.decode().strip() return inner() else: async with session.post( f"{base_url}/lollms_generate", json=request_data ) as response: return await response.text() async def lollms_model_complete( prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs ) -> Union[str, AsyncIterator[str]]: """Complete function for lollms model generation.""" # Extract and remove keyword_extraction from kwargs if present keyword_extraction = kwargs.pop("keyword_extraction", None) # Get model name from config model_name = kwargs["hashing_kv"].global_config["llm_model_name"] # If keyword extraction is needed, we might need to modify the prompt # or add specific parameters for JSON output (if lollms supports it) if keyword_extraction: # Note: You might need to adjust this based on how lollms handles structured output pass return await lollms_model_if_cache( model_name, prompt, system_prompt=system_prompt, history_messages=history_messages, **kwargs, ) async def lollms_embed( texts: List[str], embed_model=None, base_url="http://localhost:9600", **kwargs ) -> np.ndarray: """ Generate embeddings for a list of texts using lollms server. Args: texts: List of strings to embed embed_model: Model name (not used directly as lollms uses configured vectorizer) base_url: URL of the lollms server **kwargs: Additional arguments passed to the request Returns: np.ndarray: Array of embeddings """ api_key = kwargs.pop("api_key", None) headers = ( {"Content-Type": "application/json", "Authorization": api_key} if api_key else {"Content-Type": "application/json"} ) async with aiohttp.ClientSession(headers=headers) as session: embeddings = [] for text in texts: request_data = {"text": text} async with session.post( f"{base_url}/lollms_embed", json=request_data, ) as response: result = await response.json() embeddings.append(result["vector"]) return np.array(embeddings)