import os import asyncio from lightrag import LightRAG, QueryParam from lightrag.llm.openai import openai_complete_if_cache from lightrag.llm.siliconcloud import siliconcloud_embedding from lightrag.utils import EmbeddingFunc from lightrag.utils import TokenTracker import numpy as np from lightrag.kg.shared_storage import initialize_pipeline_status from dotenv import load_dotenv load_dotenv() token_tracker = TokenTracker() WORKING_DIR = "./dickens" if not os.path.exists(WORKING_DIR): os.mkdir(WORKING_DIR) async def llm_model_func( prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs ) -> str: return await openai_complete_if_cache( "Qwen/Qwen2.5-7B-Instruct", prompt, system_prompt=system_prompt, history_messages=history_messages, api_key=os.getenv("SILICONFLOW_API_KEY"), base_url="https://api.siliconflow.cn/v1/", token_tracker=token_tracker, **kwargs, ) async def embedding_func(texts: list[str]) -> np.ndarray: return await siliconcloud_embedding( texts, model="BAAI/bge-m3", api_key=os.getenv("SILICONFLOW_API_KEY"), max_token_size=512, ) # function test async def test_funcs(): # Context Manager Method with token_tracker: result = await llm_model_func("How are you?") print("llm_model_func: ", result) asyncio.run(test_funcs()) async def initialize_rag(): rag = LightRAG( working_dir=WORKING_DIR, llm_model_func=llm_model_func, embedding_func=EmbeddingFunc( embedding_dim=1024, max_token_size=512, func=embedding_func ), ) await rag.initialize_storages() await initialize_pipeline_status() return rag def main(): # Initialize RAG instance rag = asyncio.run(initialize_rag()) # Reset tracker before processing queries token_tracker.reset() with open("./book.txt", "r", encoding="utf-8") as f: rag.insert(f.read()) print( rag.query( "What are the top themes in this story?", param=QueryParam(mode="naive") ) ) print( rag.query( "What are the top themes in this story?", param=QueryParam(mode="local") ) ) print( rag.query( "What are the top themes in this story?", param=QueryParam(mode="global") ) ) print( rag.query( "What are the top themes in this story?", param=QueryParam(mode="hybrid") ) ) # Display final token usage after main query print("Token usage:", token_tracker.get_usage()) if __name__ == "__main__": main()