from fastapi import FastAPI, HTTPException, File, UploadFile, Form from pydantic import BaseModel import asyncio import logging import argparse from lightrag import LightRAG, QueryParam from lightrag.llm import openai_complete_if_cache, openai_embedding from lightrag.utils import EmbeddingFunc from typing import Optional, List from enum import Enum from pathlib import Path import shutil import aiofiles from ascii_colors import trace_exception import nest_asyncio # Apply nest_asyncio to solve event loop issues nest_asyncio.apply() def parse_args(): parser = argparse.ArgumentParser( description="LightRAG FastAPI Server with OpenAI integration" ) # Server configuration parser.add_argument( "--host", default="0.0.0.0", help="Server host (default: 0.0.0.0)" ) parser.add_argument( "--port", type=int, default=9621, help="Server port (default: 9621)" ) # Directory configuration parser.add_argument( "--working-dir", default="./rag_storage", help="Working directory for RAG storage (default: ./rag_storage)", ) parser.add_argument( "--input-dir", default="./inputs", help="Directory containing input documents (default: ./inputs)", ) # Model configuration parser.add_argument( "--model", default="gpt-4", help="OpenAI model name (default: gpt-4)" ) parser.add_argument( "--embedding-model", default="text-embedding-3-large", help="OpenAI embedding model (default: text-embedding-3-large)", ) # RAG configuration parser.add_argument( "--max-tokens", type=int, default=32768, help="Maximum token size (default: 32768)", ) parser.add_argument( "--max-embed-tokens", type=int, default=8192, help="Maximum embedding token size (default: 8192)", ) # Logging configuration parser.add_argument( "--log-level", default="INFO", choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"], help="Logging level (default: INFO)", ) return parser.parse_args() class DocumentManager: """Handles document operations and tracking""" def __init__(self, input_dir: str, supported_extensions: tuple = (".txt", ".md")): self.input_dir = Path(input_dir) self.supported_extensions = supported_extensions self.indexed_files = set() # Create input directory if it doesn't exist self.input_dir.mkdir(parents=True, exist_ok=True) def scan_directory(self) -> List[Path]: """Scan input directory for new files""" new_files = [] for ext in self.supported_extensions: for file_path in self.input_dir.rglob(f"*{ext}"): if file_path not in self.indexed_files: new_files.append(file_path) return new_files def mark_as_indexed(self, file_path: Path): """Mark a file as indexed""" self.indexed_files.add(file_path) def is_supported_file(self, filename: str) -> bool: """Check if file type is supported""" return any(filename.lower().endswith(ext) for ext in self.supported_extensions) # Pydantic models class SearchMode(str, Enum): naive = "naive" local = "local" global_ = "global" hybrid = "hybrid" class QueryRequest(BaseModel): query: str mode: SearchMode = SearchMode.hybrid stream: bool = False class QueryResponse(BaseModel): response: str class InsertTextRequest(BaseModel): text: str description: Optional[str] = None class InsertResponse(BaseModel): status: str message: str document_count: int async def get_embedding_dim(embedding_model: str) -> int: """Get embedding dimensions for the specified model""" test_text = ["This is a test sentence."] embedding = await openai_embedding(test_text, model=embedding_model) return embedding.shape[1] def create_app(args): # Setup logging logging.basicConfig( format="%(levelname)s:%(message)s", level=getattr(logging, args.log_level) ) # Initialize FastAPI app app = FastAPI( title="LightRAG API", description="API for querying text using LightRAG with OpenAI integration", ) # Create working directory if it doesn't exist Path(args.working_dir).mkdir(parents=True, exist_ok=True) # Initialize document manager doc_manager = DocumentManager(args.input_dir) # Get embedding dimensions embedding_dim = asyncio.run(get_embedding_dim(args.embedding_model)) async def async_openai_complete( prompt, system_prompt=None, history_messages=[], **kwargs ): """Async wrapper for OpenAI completion""" return await openai_complete_if_cache( args.model, prompt, system_prompt=system_prompt, history_messages=history_messages, **kwargs, ) # Initialize RAG with OpenAI configuration rag = LightRAG( working_dir=args.working_dir, llm_model_func=async_openai_complete, llm_model_name=args.model, llm_model_max_token_size=args.max_tokens, embedding_func=EmbeddingFunc( embedding_dim=embedding_dim, max_token_size=args.max_embed_tokens, func=lambda texts: openai_embedding(texts, model=args.embedding_model), ), ) @app.on_event("startup") async def startup_event(): """Index all files in input directory during startup""" try: new_files = doc_manager.scan_directory() for file_path in new_files: try: # Use async file reading async with aiofiles.open(file_path, "r", encoding="utf-8") as f: content = await f.read() # Use the async version of insert directly await rag.ainsert(content) doc_manager.mark_as_indexed(file_path) logging.info(f"Indexed file: {file_path}") except Exception as e: trace_exception(e) logging.error(f"Error indexing file {file_path}: {str(e)}") logging.info(f"Indexed {len(new_files)} documents from {args.input_dir}") except Exception as e: logging.error(f"Error during startup indexing: {str(e)}") @app.post("/documents/scan") async def scan_for_new_documents(): """Manually trigger scanning for new documents""" try: new_files = doc_manager.scan_directory() indexed_count = 0 for file_path in new_files: try: with open(file_path, "r", encoding="utf-8") as f: content = f.read() rag.insert(content) doc_manager.mark_as_indexed(file_path) indexed_count += 1 except Exception as e: logging.error(f"Error indexing file {file_path}: {str(e)}") return { "status": "success", "indexed_count": indexed_count, "total_documents": len(doc_manager.indexed_files), } except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.post("/documents/upload") async def upload_to_input_dir(file: UploadFile = File(...)): """Upload a file to the input directory""" try: if not doc_manager.is_supported_file(file.filename): raise HTTPException( status_code=400, detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}", ) file_path = doc_manager.input_dir / file.filename with open(file_path, "wb") as buffer: shutil.copyfileobj(file.file, buffer) # Immediately index the uploaded file with open(file_path, "r", encoding="utf-8") as f: content = f.read() rag.insert(content) doc_manager.mark_as_indexed(file_path) return { "status": "success", "message": f"File uploaded and indexed: {file.filename}", "total_documents": len(doc_manager.indexed_files), } except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.post("/query", response_model=QueryResponse) async def query_text(request: QueryRequest): try: response = await rag.aquery( request.query, param=QueryParam(mode=request.mode, stream=request.stream), ) if request.stream: result = "" async for chunk in response: result += chunk return QueryResponse(response=result) else: return QueryResponse(response=response) except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.post("/query/stream") async def query_text_stream(request: QueryRequest): try: response = rag.query( request.query, param=QueryParam(mode=request.mode, stream=True) ) async def stream_generator(): async for chunk in response: yield chunk return stream_generator() except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.post("/documents/text", response_model=InsertResponse) async def insert_text(request: InsertTextRequest): try: rag.insert(request.text) return InsertResponse( status="success", message="Text successfully inserted", document_count=len(rag), ) except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.post("/documents/file", response_model=InsertResponse) async def insert_file(file: UploadFile = File(...), description: str = Form(None)): try: content = await file.read() if file.filename.endswith((".txt", ".md")): text = content.decode("utf-8") rag.insert(text) else: raise HTTPException( status_code=400, detail="Unsupported file type. Only .txt and .md files are supported", ) return InsertResponse( status="success", message=f"File '{file.filename}' successfully inserted", document_count=len(rag), ) except UnicodeDecodeError: raise HTTPException(status_code=400, detail="File encoding not supported") except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.post("/documents/batch", response_model=InsertResponse) async def insert_batch(files: List[UploadFile] = File(...)): try: inserted_count = 0 failed_files = [] for file in files: try: content = await file.read() if file.filename.endswith((".txt", ".md")): text = content.decode("utf-8") rag.insert(text) inserted_count += 1 else: failed_files.append(f"{file.filename} (unsupported type)") except Exception as e: failed_files.append(f"{file.filename} ({str(e)})") status_message = f"Successfully inserted {inserted_count} documents" if failed_files: status_message += f". Failed files: {', '.join(failed_files)}" return InsertResponse( status="success" if inserted_count > 0 else "partial_success", message=status_message, document_count=len(rag), ) except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.delete("/documents", response_model=InsertResponse) async def clear_documents(): try: rag.text_chunks = [] rag.entities_vdb = None rag.relationships_vdb = None return InsertResponse( status="success", message="All documents cleared successfully", document_count=0, ) except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.get("/health") async def get_status(): """Get current system status""" return { "status": "healthy", "working_directory": str(args.working_dir), "input_directory": str(args.input_dir), "indexed_files": len(doc_manager.indexed_files), "configuration": { "model": args.model, "embedding_model": args.embedding_model, "max_tokens": args.max_tokens, "embedding_dim": embedding_dim, }, } return app def main(): args = parse_args() import uvicorn app = create_app(args) uvicorn.run(app, host=args.host, port=args.port) if __name__ == "__main__": main()