import os import asyncio import random from dataclasses import dataclass from typing import final import configparser from ..utils import logger from ..base import BaseGraphStorage from ..types import KnowledgeGraph, KnowledgeGraphNode, KnowledgeGraphEdge from ..constants import GRAPH_FIELD_SEP import pipmaster as pm if not pm.is_installed("neo4j"): pm.install("neo4j") from neo4j import ( AsyncGraphDatabase, AsyncManagedTransaction, ) from neo4j.exceptions import TransientError, ResultFailedError from dotenv import load_dotenv # use the .env that is inside the current folder load_dotenv(dotenv_path=".env", override=False) MAX_GRAPH_NODES = int(os.getenv("MAX_GRAPH_NODES", 1000)) config = configparser.ConfigParser() config.read("config.ini", "utf-8") @final @dataclass class MemgraphStorage(BaseGraphStorage): def __init__(self, namespace, global_config, embedding_func, workspace=None): memgraph_workspace = os.environ.get("MEMGRAPH_WORKSPACE") if memgraph_workspace and memgraph_workspace.strip(): workspace = memgraph_workspace super().__init__( namespace=namespace, workspace=workspace or "", global_config=global_config, embedding_func=embedding_func, ) self._driver = None def _get_workspace_label(self) -> str: """Get workspace label, return 'base' for compatibility when workspace is empty""" workspace = getattr(self, "workspace", None) return workspace if workspace else "base" async def initialize(self): URI = os.environ.get( "MEMGRAPH_URI", config.get("memgraph", "uri", fallback="bolt://localhost:7687"), ) USERNAME = os.environ.get( "MEMGRAPH_USERNAME", config.get("memgraph", "username", fallback="") ) PASSWORD = os.environ.get( "MEMGRAPH_PASSWORD", config.get("memgraph", "password", fallback="") ) DATABASE = os.environ.get( "MEMGRAPH_DATABASE", config.get("memgraph", "database", fallback="memgraph") ) self._driver = AsyncGraphDatabase.driver( URI, auth=(USERNAME, PASSWORD), ) self._DATABASE = DATABASE try: async with self._driver.session(database=DATABASE) as session: # Create index for base nodes on entity_id if it doesn't exist try: workspace_label = self._get_workspace_label() await session.run( f"""CREATE INDEX ON :{workspace_label}(entity_id)""" ) logger.info( f"Created index on :{workspace_label}(entity_id) in Memgraph." ) except Exception as e: # Index may already exist, which is not an error logger.warning( f"Index creation on :{workspace_label}(entity_id) may have failed or already exists: {e}" ) await session.run("RETURN 1") logger.info(f"Connected to Memgraph at {URI}") except Exception as e: logger.error(f"Failed to connect to Memgraph at {URI}: {e}") raise async def finalize(self): if self._driver is not None: await self._driver.close() self._driver = None async def __aexit__(self, exc_type, exc, tb): await self.finalize() async def index_done_callback(self): # Memgraph handles persistence automatically pass async def has_node(self, node_id: str) -> bool: """ Check if a node exists in the graph. Args: node_id: The ID of the node to check. Returns: bool: True if the node exists, False otherwise. Raises: Exception: If there is an error checking the node existence. """ if self._driver is None: raise RuntimeError( "Memgraph driver is not initialized. Call 'await initialize()' first." ) async with self._driver.session( database=self._DATABASE, default_access_mode="READ" ) as session: try: workspace_label = self._get_workspace_label() query = f"MATCH (n:`{workspace_label}` {{entity_id: $entity_id}}) RETURN count(n) > 0 AS node_exists" result = await session.run(query, entity_id=node_id) single_result = await result.single() await result.consume() # Ensure result is fully consumed return ( single_result["node_exists"] if single_result is not None else False ) except Exception as e: logger.error(f"Error checking node existence for {node_id}: {str(e)}") await result.consume() # Ensure the result is consumed even on error raise async def has_edge(self, source_node_id: str, target_node_id: str) -> bool: """ Check if an edge exists between two nodes in the graph. Args: source_node_id: The ID of the source node. target_node_id: The ID of the target node. Returns: bool: True if the edge exists, False otherwise. Raises: Exception: If there is an error checking the edge existence. """ if self._driver is None: raise RuntimeError( "Memgraph driver is not initialized. Call 'await initialize()' first." ) async with self._driver.session( database=self._DATABASE, default_access_mode="READ" ) as session: try: workspace_label = self._get_workspace_label() query = ( f"MATCH (a:`{workspace_label}` {{entity_id: $source_entity_id}})-[r]-(b:`{workspace_label}` {{entity_id: $target_entity_id}}) " "RETURN COUNT(r) > 0 AS edgeExists" ) result = await session.run( query, source_entity_id=source_node_id, target_entity_id=target_node_id, ) # type: ignore single_result = await result.single() await result.consume() # Ensure result is fully consumed return ( single_result["edgeExists"] if single_result is not None else False ) except Exception as e: logger.error( f"Error checking edge existence between {source_node_id} and {target_node_id}: {str(e)}" ) await result.consume() # Ensure the result is consumed even on error raise async def get_node(self, node_id: str) -> dict[str, str] | None: """Get node by its label identifier, return only node properties Args: node_id: The node label to look up Returns: dict: Node properties if found None: If node not found Raises: Exception: If there is an error executing the query """ if self._driver is None: raise RuntimeError( "Memgraph driver is not initialized. Call 'await initialize()' first." ) async with self._driver.session( database=self._DATABASE, default_access_mode="READ" ) as session: try: workspace_label = self._get_workspace_label() query = ( f"MATCH (n:`{workspace_label}` {{entity_id: $entity_id}}) RETURN n" ) result = await session.run(query, entity_id=node_id) try: records = await result.fetch( 2 ) # Get 2 records for duplication check if len(records) > 1: logger.warning( f"Multiple nodes found with label '{node_id}'. Using first node." ) if records: node = records[0]["n"] node_dict = dict(node) # Remove workspace label from labels list if it exists if "labels" in node_dict: node_dict["labels"] = [ label for label in node_dict["labels"] if label != workspace_label ] return node_dict return None finally: await result.consume() # Ensure result is fully consumed except Exception as e: logger.error(f"Error getting node for {node_id}: {str(e)}") raise async def node_degree(self, node_id: str) -> int: """Get the degree (number of relationships) of a node with the given label. If multiple nodes have the same label, returns the degree of the first node. If no node is found, returns 0. Args: node_id: The label of the node Returns: int: The number of relationships the node has, or 0 if no node found Raises: Exception: If there is an error executing the query """ if self._driver is None: raise RuntimeError( "Memgraph driver is not initialized. Call 'await initialize()' first." ) async with self._driver.session( database=self._DATABASE, default_access_mode="READ" ) as session: try: workspace_label = self._get_workspace_label() query = f""" MATCH (n:`{workspace_label}` {{entity_id: $entity_id}}) OPTIONAL MATCH (n)-[r]-() RETURN COUNT(r) AS degree """ result = await session.run(query, entity_id=node_id) try: record = await result.single() if not record: logger.warning(f"No node found with label '{node_id}'") return 0 degree = record["degree"] return degree finally: await result.consume() # Ensure result is fully consumed except Exception as e: logger.error(f"Error getting node degree for {node_id}: {str(e)}") raise async def get_all_labels(self) -> list[str]: """ Get all existing node labels in the database Returns: ["Person", "Company", ...] # Alphabetically sorted label list Raises: Exception: If there is an error executing the query """ if self._driver is None: raise RuntimeError( "Memgraph driver is not initialized. Call 'await initialize()' first." ) async with self._driver.session( database=self._DATABASE, default_access_mode="READ" ) as session: try: workspace_label = self._get_workspace_label() query = f""" MATCH (n:`{workspace_label}`) WHERE n.entity_id IS NOT NULL RETURN DISTINCT n.entity_id AS label ORDER BY label """ result = await session.run(query) labels = [] async for record in result: labels.append(record["label"]) await result.consume() return labels except Exception as e: logger.error(f"Error getting all labels: {str(e)}") await result.consume() # Ensure the result is consumed even on error raise async def get_node_edges(self, source_node_id: str) -> list[tuple[str, str]] | None: """Retrieves all edges (relationships) for a particular node identified by its label. Args: source_node_id: Label of the node to get edges for Returns: list[tuple[str, str]]: List of (source_label, target_label) tuples representing edges None: If no edges found Raises: Exception: If there is an error executing the query """ if self._driver is None: raise RuntimeError( "Memgraph driver is not initialized. Call 'await initialize()' first." ) try: async with self._driver.session( database=self._DATABASE, default_access_mode="READ" ) as session: try: workspace_label = self._get_workspace_label() query = f"""MATCH (n:`{workspace_label}` {{entity_id: $entity_id}}) OPTIONAL MATCH (n)-[r]-(connected:`{workspace_label}`) WHERE connected.entity_id IS NOT NULL RETURN n, r, connected""" results = await session.run(query, entity_id=source_node_id) edges = [] async for record in results: source_node = record["n"] connected_node = record["connected"] # Skip if either node is None if not source_node or not connected_node: continue source_label = ( source_node.get("entity_id") if source_node.get("entity_id") else None ) target_label = ( connected_node.get("entity_id") if connected_node.get("entity_id") else None ) if source_label and target_label: edges.append((source_label, target_label)) await results.consume() # Ensure results are consumed return edges except Exception as e: logger.error( f"Error getting edges for node {source_node_id}: {str(e)}" ) await results.consume() # Ensure results are consumed even on error raise except Exception as e: logger.error(f"Error in get_node_edges for {source_node_id}: {str(e)}") raise async def get_edge( self, source_node_id: str, target_node_id: str ) -> dict[str, str] | None: """Get edge properties between two nodes. Args: source_node_id: Label of the source node target_node_id: Label of the target node Returns: dict: Edge properties if found, default properties if not found or on error Raises: Exception: If there is an error executing the query """ if self._driver is None: raise RuntimeError( "Memgraph driver is not initialized. Call 'await initialize()' first." ) async with self._driver.session( database=self._DATABASE, default_access_mode="READ" ) as session: try: workspace_label = self._get_workspace_label() query = f""" MATCH (start:`{workspace_label}` {{entity_id: $source_entity_id}})-[r]-(end:`{workspace_label}` {{entity_id: $target_entity_id}}) RETURN properties(r) as edge_properties """ result = await session.run( query, source_entity_id=source_node_id, target_entity_id=target_node_id, ) records = await result.fetch(2) await result.consume() if records: edge_result = dict(records[0]["edge_properties"]) for key, default_value in { "weight": 1.0, "source_id": None, "description": None, "keywords": None, }.items(): if key not in edge_result: edge_result[key] = default_value logger.warning( f"Edge between {source_node_id} and {target_node_id} is missing property: {key}. Using default value: {default_value}" ) return edge_result return None except Exception as e: logger.error( f"Error getting edge between {source_node_id} and {target_node_id}: {str(e)}" ) await result.consume() # Ensure the result is consumed even on error raise async def upsert_node(self, node_id: str, node_data: dict[str, str]) -> None: """ Upsert a node in the Memgraph database with manual transaction-level retry logic for transient errors. Args: node_id: The unique identifier for the node (used as label) node_data: Dictionary of node properties """ if self._driver is None: raise RuntimeError( "Memgraph driver is not initialized. Call 'await initialize()' first." ) properties = node_data entity_type = properties["entity_type"] if "entity_id" not in properties: raise ValueError( "Memgraph: node properties must contain an 'entity_id' field" ) # Manual transaction-level retry following official Memgraph documentation max_retries = 100 initial_wait_time = 0.2 backoff_factor = 1.1 jitter_factor = 0.1 for attempt in range(max_retries): try: logger.debug( f"Attempting node upsert, attempt {attempt + 1}/{max_retries}" ) async with self._driver.session(database=self._DATABASE) as session: workspace_label = self._get_workspace_label() async def execute_upsert(tx: AsyncManagedTransaction): query = f""" MERGE (n:`{workspace_label}` {{entity_id: $entity_id}}) SET n += $properties SET n:`{entity_type}` """ result = await tx.run( query, entity_id=node_id, properties=properties ) await result.consume() # Ensure result is fully consumed await session.execute_write(execute_upsert) break # Success - exit retry loop except (TransientError, ResultFailedError) as e: # Check if the root cause is a TransientError root_cause = e while hasattr(root_cause, "__cause__") and root_cause.__cause__: root_cause = root_cause.__cause__ # Check if this is a transient error that should be retried is_transient = ( isinstance(root_cause, TransientError) or isinstance(e, TransientError) or "TransientError" in str(e) or "Cannot resolve conflicting transactions" in str(e) ) if is_transient: if attempt < max_retries - 1: # Calculate wait time with exponential backoff and jitter jitter = random.uniform(0, jitter_factor) * initial_wait_time wait_time = ( initial_wait_time * (backoff_factor**attempt) + jitter ) logger.warning( f"Node upsert failed. Attempt #{attempt + 1} retrying in {wait_time:.3f} seconds... Error: {str(e)}" ) await asyncio.sleep(wait_time) else: logger.error( f"Memgraph transient error during node upsert after {max_retries} retries: {str(e)}" ) raise else: # Non-transient error, don't retry logger.error(f"Non-transient error during node upsert: {str(e)}") raise except Exception as e: logger.error(f"Unexpected error during node upsert: {str(e)}") raise async def upsert_edge( self, source_node_id: str, target_node_id: str, edge_data: dict[str, str] ) -> None: """ Upsert an edge and its properties between two nodes identified by their labels with manual transaction-level retry logic for transient errors. Ensures both source and target nodes exist and are unique before creating the edge. Uses entity_id property to uniquely identify nodes. Args: source_node_id (str): Label of the source node (used as identifier) target_node_id (str): Label of the target node (used as identifier) edge_data (dict): Dictionary of properties to set on the edge Raises: Exception: If there is an error executing the query """ if self._driver is None: raise RuntimeError( "Memgraph driver is not initialized. Call 'await initialize()' first." ) edge_properties = edge_data # Manual transaction-level retry following official Memgraph documentation max_retries = 100 initial_wait_time = 0.2 backoff_factor = 1.1 jitter_factor = 0.1 for attempt in range(max_retries): try: logger.debug( f"Attempting edge upsert, attempt {attempt + 1}/{max_retries}" ) async with self._driver.session(database=self._DATABASE) as session: async def execute_upsert(tx: AsyncManagedTransaction): workspace_label = self._get_workspace_label() query = f""" MATCH (source:`{workspace_label}` {{entity_id: $source_entity_id}}) WITH source MATCH (target:`{workspace_label}` {{entity_id: $target_entity_id}}) MERGE (source)-[r:DIRECTED]-(target) SET r += $properties RETURN r, source, target """ result = await tx.run( query, source_entity_id=source_node_id, target_entity_id=target_node_id, properties=edge_properties, ) try: await result.fetch(2) finally: await result.consume() # Ensure result is consumed await session.execute_write(execute_upsert) break # Success - exit retry loop except (TransientError, ResultFailedError) as e: # Check if the root cause is a TransientError root_cause = e while hasattr(root_cause, "__cause__") and root_cause.__cause__: root_cause = root_cause.__cause__ # Check if this is a transient error that should be retried is_transient = ( isinstance(root_cause, TransientError) or isinstance(e, TransientError) or "TransientError" in str(e) or "Cannot resolve conflicting transactions" in str(e) ) if is_transient: if attempt < max_retries - 1: # Calculate wait time with exponential backoff and jitter jitter = random.uniform(0, jitter_factor) * initial_wait_time wait_time = ( initial_wait_time * (backoff_factor**attempt) + jitter ) logger.warning( f"Edge upsert failed. Attempt #{attempt + 1} retrying in {wait_time:.3f} seconds... Error: {str(e)}" ) await asyncio.sleep(wait_time) else: logger.error( f"Memgraph transient error during edge upsert after {max_retries} retries: {str(e)}" ) raise else: # Non-transient error, don't retry logger.error(f"Non-transient error during edge upsert: {str(e)}") raise except Exception as e: logger.error(f"Unexpected error during edge upsert: {str(e)}") raise async def delete_node(self, node_id: str) -> None: """Delete a node with the specified label Args: node_id: The label of the node to delete Raises: Exception: If there is an error executing the query """ if self._driver is None: raise RuntimeError( "Memgraph driver is not initialized. Call 'await initialize()' first." ) async def _do_delete(tx: AsyncManagedTransaction): workspace_label = self._get_workspace_label() query = f""" MATCH (n:`{workspace_label}` {{entity_id: $entity_id}}) DETACH DELETE n """ result = await tx.run(query, entity_id=node_id) logger.debug(f"Deleted node with label {node_id}") await result.consume() try: async with self._driver.session(database=self._DATABASE) as session: await session.execute_write(_do_delete) except Exception as e: logger.error(f"Error during node deletion: {str(e)}") raise async def remove_nodes(self, nodes: list[str]): """Delete multiple nodes Args: nodes: List of node labels to be deleted """ if self._driver is None: raise RuntimeError( "Memgraph driver is not initialized. Call 'await initialize()' first." ) for node in nodes: await self.delete_node(node) async def remove_edges(self, edges: list[tuple[str, str]]): """Delete multiple edges Args: edges: List of edges to be deleted, each edge is a (source, target) tuple Raises: Exception: If there is an error executing the query """ if self._driver is None: raise RuntimeError( "Memgraph driver is not initialized. Call 'await initialize()' first." ) for source, target in edges: async def _do_delete_edge(tx: AsyncManagedTransaction): workspace_label = self._get_workspace_label() query = f""" MATCH (source:`{workspace_label}` {{entity_id: $source_entity_id}})-[r]-(target:`{workspace_label}` {{entity_id: $target_entity_id}}) DELETE r """ result = await tx.run( query, source_entity_id=source, target_entity_id=target ) logger.debug(f"Deleted edge from '{source}' to '{target}'") await result.consume() # Ensure result is fully consumed try: async with self._driver.session(database=self._DATABASE) as session: await session.execute_write(_do_delete_edge) except Exception as e: logger.error(f"Error during edge deletion: {str(e)}") raise async def drop(self) -> dict[str, str]: """Drop all data from the current workspace and clean up resources This method will delete all nodes and relationships in the Memgraph database. Returns: dict[str, str]: Operation status and message - On success: {"status": "success", "message": "data dropped"} - On failure: {"status": "error", "message": ""} Raises: Exception: If there is an error executing the query """ if self._driver is None: raise RuntimeError( "Memgraph driver is not initialized. Call 'await initialize()' first." ) try: async with self._driver.session(database=self._DATABASE) as session: workspace_label = self._get_workspace_label() query = f"MATCH (n:`{workspace_label}`) DETACH DELETE n" result = await session.run(query) await result.consume() logger.info( f"Dropped workspace {workspace_label} from Memgraph database {self._DATABASE}" ) return {"status": "success", "message": "workspace data dropped"} except Exception as e: logger.error( f"Error dropping workspace {workspace_label} from Memgraph database {self._DATABASE}: {e}" ) return {"status": "error", "message": str(e)} async def edge_degree(self, src_id: str, tgt_id: str) -> int: """Get the total degree (sum of relationships) of two nodes. Args: src_id: Label of the source node tgt_id: Label of the target node Returns: int: Sum of the degrees of both nodes """ if self._driver is None: raise RuntimeError( "Memgraph driver is not initialized. Call 'await initialize()' first." ) src_degree = await self.node_degree(src_id) trg_degree = await self.node_degree(tgt_id) # Convert None to 0 for addition src_degree = 0 if src_degree is None else src_degree trg_degree = 0 if trg_degree is None else trg_degree degrees = int(src_degree) + int(trg_degree) return degrees async def get_nodes_by_chunk_ids(self, chunk_ids: list[str]) -> list[dict]: """Get all nodes that are associated with the given chunk_ids. Args: chunk_ids: List of chunk IDs to find associated nodes for Returns: list[dict]: A list of nodes, where each node is a dictionary of its properties. An empty list if no matching nodes are found. """ if self._driver is None: raise RuntimeError( "Memgraph driver is not initialized. Call 'await initialize()' first." ) workspace_label = self._get_workspace_label() async with self._driver.session( database=self._DATABASE, default_access_mode="READ" ) as session: query = f""" UNWIND $chunk_ids AS chunk_id MATCH (n:`{workspace_label}`) WHERE n.source_id IS NOT NULL AND chunk_id IN split(n.source_id, $sep) RETURN DISTINCT n """ result = await session.run(query, chunk_ids=chunk_ids, sep=GRAPH_FIELD_SEP) nodes = [] async for record in result: node = record["n"] node_dict = dict(node) node_dict["id"] = node_dict.get("entity_id") nodes.append(node_dict) await result.consume() return nodes async def get_edges_by_chunk_ids(self, chunk_ids: list[str]) -> list[dict]: """Get all edges that are associated with the given chunk_ids. Args: chunk_ids: List of chunk IDs to find associated edges for Returns: list[dict]: A list of edges, where each edge is a dictionary of its properties. An empty list if no matching edges are found. """ if self._driver is None: raise RuntimeError( "Memgraph driver is not initialized. Call 'await initialize()' first." ) workspace_label = self._get_workspace_label() async with self._driver.session( database=self._DATABASE, default_access_mode="READ" ) as session: query = f""" UNWIND $chunk_ids AS chunk_id MATCH (a:`{workspace_label}`)-[r]-(b:`{workspace_label}`) WHERE r.source_id IS NOT NULL AND chunk_id IN split(r.source_id, $sep) WITH a, b, r, a.entity_id AS source_id, b.entity_id AS target_id // Ensure we only return each unique edge once by ordering the source and target WITH a, b, r, CASE WHEN source_id <= target_id THEN source_id ELSE target_id END AS ordered_source, CASE WHEN source_id <= target_id THEN target_id ELSE source_id END AS ordered_target RETURN DISTINCT ordered_source AS source, ordered_target AS target, properties(r) AS properties """ result = await session.run(query, chunk_ids=chunk_ids, sep=GRAPH_FIELD_SEP) edges = [] async for record in result: edge_properties = record["properties"] edge_properties["source"] = record["source"] edge_properties["target"] = record["target"] edges.append(edge_properties) await result.consume() return edges async def get_knowledge_graph( self, node_label: str, max_depth: int = 3, max_nodes: int = None, ) -> KnowledgeGraph: """ Retrieve a connected subgraph of nodes where the label includes the specified `node_label`. Args: node_label: Label of the starting node, * means all nodes max_depth: Maximum depth of the subgraph, Defaults to 3 max_nodes: Maximum nodes to return by BFS, Defaults to 1000 Returns: KnowledgeGraph object containing nodes and edges, with an is_truncated flag indicating whether the graph was truncated due to max_nodes limit """ # Get max_nodes from global_config if not provided if max_nodes is None: max_nodes = self.global_config.get("max_graph_nodes", 1000) else: # Limit max_nodes to not exceed global_config max_graph_nodes max_nodes = min(max_nodes, self.global_config.get("max_graph_nodes", 1000)) workspace_label = self._get_workspace_label() result = KnowledgeGraph() seen_nodes = set() seen_edges = set() async with self._driver.session( database=self._DATABASE, default_access_mode="READ" ) as session: try: if node_label == "*": # First check total node count to determine if graph is truncated count_query = ( f"MATCH (n:`{workspace_label}`) RETURN count(n) as total" ) count_result = None try: count_result = await session.run(count_query) count_record = await count_result.single() if count_record and count_record["total"] > max_nodes: result.is_truncated = True logger.info( f"Graph truncated: {count_record['total']} nodes found, limited to {max_nodes}" ) finally: if count_result: await count_result.consume() # Run main query to get nodes with highest degree main_query = f""" MATCH (n:`{workspace_label}`) OPTIONAL MATCH (n)-[r]-() WITH n, COALESCE(count(r), 0) AS degree ORDER BY degree DESC LIMIT $max_nodes WITH collect({{node: n}}) AS filtered_nodes UNWIND filtered_nodes AS node_info WITH collect(node_info.node) AS kept_nodes, filtered_nodes OPTIONAL MATCH (a)-[r]-(b) WHERE a IN kept_nodes AND b IN kept_nodes RETURN filtered_nodes AS node_info, collect(DISTINCT r) AS relationships """ result_set = None try: result_set = await session.run( main_query, {"max_nodes": max_nodes}, ) record = await result_set.single() finally: if result_set: await result_set.consume() else: # Run subgraph query for specific node_label subgraph_query = f""" MATCH (start:`{workspace_label}`) WHERE start.entity_id = $entity_id MATCH path = (start)-[*BFS 0..{max_depth}]-(end:`{workspace_label}`) WHERE ALL(n IN nodes(path) WHERE '{workspace_label}' IN labels(n)) WITH collect(DISTINCT end) + start AS all_nodes_unlimited WITH CASE WHEN size(all_nodes_unlimited) <= $max_nodes THEN all_nodes_unlimited ELSE all_nodes_unlimited[0..$max_nodes] END AS limited_nodes, size(all_nodes_unlimited) > $max_nodes AS is_truncated UNWIND limited_nodes AS n MATCH (n)-[r]-(m) WHERE m IN limited_nodes WITH collect(DISTINCT n) AS limited_nodes, collect(DISTINCT r) AS relationships, is_truncated RETURN [node IN limited_nodes | {{node: node}}] AS node_info, relationships, is_truncated """ result_set = None try: result_set = await session.run( subgraph_query, { "entity_id": node_label, "max_nodes": max_nodes, }, ) record = await result_set.single() # If no record found, return empty KnowledgeGraph if not record: logger.debug(f"No nodes found for entity_id: {node_label}") return result # Check if the result was truncated if record.get("is_truncated"): result.is_truncated = True logger.info( f"Graph truncated: breadth-first search limited to {max_nodes} nodes" ) finally: if result_set: await result_set.consume() if record: for node_info in record["node_info"]: node = node_info["node"] node_id = node.id if node_id not in seen_nodes: result.nodes.append( KnowledgeGraphNode( id=f"{node_id}", labels=[node.get("entity_id")], properties=dict(node), ) ) seen_nodes.add(node_id) for rel in record["relationships"]: edge_id = rel.id if edge_id not in seen_edges: start = rel.start_node end = rel.end_node result.edges.append( KnowledgeGraphEdge( id=f"{edge_id}", type=rel.type, source=f"{start.id}", target=f"{end.id}", properties=dict(rel), ) ) seen_edges.add(edge_id) logger.info( f"Subgraph query successful | Node count: {len(result.nodes)} | Edge count: {len(result.edges)}" ) except Exception as e: logger.warning(f"Memgraph error during subgraph query: {str(e)}") return result