import os from lightrag import LightRAG, QueryParam from lightrag.llm import ollama_model_complete, ollama_embedding from lightrag.utils import EmbeddingFunc WORKING_DIR = "./dickens" if not os.path.exists(WORKING_DIR): os.mkdir(WORKING_DIR) rag = LightRAG( working_dir=WORKING_DIR, llm_model_func=ollama_model_complete, llm_model_name="your_model_name", embedding_func=EmbeddingFunc( embedding_dim=768, max_token_size=8192, func=lambda texts: ollama_embedding(texts, embed_model="nomic-embed-text"), ), ) with open("./book.txt", "r", encoding="utf-8") as f: rag.insert(f.read()) # Perform naive search print( rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")) ) # Perform local search print( rag.query("What are the top themes in this story?", param=QueryParam(mode="local")) ) # Perform global search print( rag.query("What are the top themes in this story?", param=QueryParam(mode="global")) ) # Perform hybrid search print( rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")) )