""" LightRAG FastAPI Server """ from fastapi import ( FastAPI, Depends, ) from fastapi.responses import FileResponse import asyncio import threading import os from fastapi.staticfiles import StaticFiles import logging import argparse from typing import Dict from pathlib import Path import configparser from ascii_colors import ASCIIColors import sys from fastapi.middleware.cors import CORSMiddleware from contextlib import asynccontextmanager from dotenv import load_dotenv from .utils_api import get_api_key_dependency from lightrag import LightRAG from lightrag.types import GPTKeywordExtractionFormat from lightrag.api import __api_version__ from lightrag.utils import EmbeddingFunc from lightrag.utils import logger from .routers.document_routes import ( DocumentManager, create_document_routes, run_scanning_process, ) from .routers.query_routes import create_query_routes from .routers.graph_routes import create_graph_routes from .routers.ollama_api import OllamaAPI, ollama_server_infos # Load environment variables try: load_dotenv(override=True) except Exception as e: logger.warning(f"Failed to load .env file: {e}") # Initialize config parser config = configparser.ConfigParser() config.read("config.ini") # Global configuration global_top_k = 60 # default value class DefaultRAGStorageConfig: KV_STORAGE = "JsonKVStorage" VECTOR_STORAGE = "NanoVectorDBStorage" GRAPH_STORAGE = "NetworkXStorage" DOC_STATUS_STORAGE = "JsonDocStatusStorage" # Global progress tracker scan_progress: Dict = { "is_scanning": False, "current_file": "", "indexed_count": 0, "total_files": 0, "progress": 0, } # Lock for thread-safe operations progress_lock = threading.Lock() def get_default_host(binding_type: str) -> str: default_hosts = { "ollama": os.getenv("LLM_BINDING_HOST", "http://localhost:11434"), "lollms": os.getenv("LLM_BINDING_HOST", "http://localhost:9600"), "azure_openai": os.getenv("AZURE_OPENAI_ENDPOINT", "https://api.openai.com/v1"), "openai": os.getenv("LLM_BINDING_HOST", "https://api.openai.com/v1"), } return default_hosts.get( binding_type, os.getenv("LLM_BINDING_HOST", "http://localhost:11434") ) # fallback to ollama if unknown def get_env_value(env_key: str, default: any, value_type: type = str) -> any: """ Get value from environment variable with type conversion Args: env_key (str): Environment variable key default (any): Default value if env variable is not set value_type (type): Type to convert the value to Returns: any: Converted value from environment or default """ value = os.getenv(env_key) if value is None: return default if value_type is bool: return value.lower() in ("true", "1", "yes", "t", "on") try: return value_type(value) except ValueError: return default def display_splash_screen(args: argparse.Namespace) -> None: """ Display a colorful splash screen showing LightRAG server configuration Args: args: Parsed command line arguments """ # Banner ASCIIColors.cyan(f""" ╔══════════════════════════════════════════════════════════════╗ ║ 🚀 LightRAG Server v{__api_version__} ║ ║ Fast, Lightweight RAG Server Implementation ║ ╚══════════════════════════════════════════════════════════════╝ """) # Server Configuration ASCIIColors.magenta("\n📡 Server Configuration:") ASCIIColors.white(" ├─ Host: ", end="") ASCIIColors.yellow(f"{args.host}") ASCIIColors.white(" ├─ Port: ", end="") ASCIIColors.yellow(f"{args.port}") ASCIIColors.white(" ├─ CORS Origins: ", end="") ASCIIColors.yellow(f"{os.getenv('CORS_ORIGINS', '*')}") ASCIIColors.white(" ├─ SSL Enabled: ", end="") ASCIIColors.yellow(f"{args.ssl}") ASCIIColors.white(" └─ API Key: ", end="") ASCIIColors.yellow("Set" if args.key else "Not Set") if args.ssl: ASCIIColors.white(" ├─ SSL Cert: ", end="") ASCIIColors.yellow(f"{args.ssl_certfile}") ASCIIColors.white(" └─ SSL Key: ", end="") ASCIIColors.yellow(f"{args.ssl_keyfile}") # Directory Configuration ASCIIColors.magenta("\n📂 Directory Configuration:") ASCIIColors.white(" ├─ Working Directory: ", end="") ASCIIColors.yellow(f"{args.working_dir}") ASCIIColors.white(" └─ Input Directory: ", end="") ASCIIColors.yellow(f"{args.input_dir}") # LLM Configuration ASCIIColors.magenta("\n🤖 LLM Configuration:") ASCIIColors.white(" ├─ Binding: ", end="") ASCIIColors.yellow(f"{args.llm_binding}") ASCIIColors.white(" ├─ Host: ", end="") ASCIIColors.yellow(f"{args.llm_binding_host}") ASCIIColors.white(" └─ Model: ", end="") ASCIIColors.yellow(f"{args.llm_model}") # Embedding Configuration ASCIIColors.magenta("\n📊 Embedding Configuration:") ASCIIColors.white(" ├─ Binding: ", end="") ASCIIColors.yellow(f"{args.embedding_binding}") ASCIIColors.white(" ├─ Host: ", end="") ASCIIColors.yellow(f"{args.embedding_binding_host}") ASCIIColors.white(" ├─ Model: ", end="") ASCIIColors.yellow(f"{args.embedding_model}") ASCIIColors.white(" └─ Dimensions: ", end="") ASCIIColors.yellow(f"{args.embedding_dim}") # RAG Configuration ASCIIColors.magenta("\n⚙️ RAG Configuration:") ASCIIColors.white(" ├─ Max Async Operations: ", end="") ASCIIColors.yellow(f"{args.max_async}") ASCIIColors.white(" ├─ Max Tokens: ", end="") ASCIIColors.yellow(f"{args.max_tokens}") ASCIIColors.white(" ├─ Max Embed Tokens: ", end="") ASCIIColors.yellow(f"{args.max_embed_tokens}") ASCIIColors.white(" ├─ Chunk Size: ", end="") ASCIIColors.yellow(f"{args.chunk_size}") ASCIIColors.white(" ├─ Chunk Overlap Size: ", end="") ASCIIColors.yellow(f"{args.chunk_overlap_size}") ASCIIColors.white(" ├─ History Turns: ", end="") ASCIIColors.yellow(f"{args.history_turns}") ASCIIColors.white(" ├─ Cosine Threshold: ", end="") ASCIIColors.yellow(f"{args.cosine_threshold}") ASCIIColors.white(" └─ Top-K: ", end="") ASCIIColors.yellow(f"{args.top_k}") # System Configuration ASCIIColors.magenta("\n💾 Storage Configuration:") ASCIIColors.white(" ├─ KV Storage: ", end="") ASCIIColors.yellow(f"{args.kv_storage}") ASCIIColors.white(" ├─ Vector Storage: ", end="") ASCIIColors.yellow(f"{args.vector_storage}") ASCIIColors.white(" ├─ Graph Storage: ", end="") ASCIIColors.yellow(f"{args.graph_storage}") ASCIIColors.white(" └─ Document Status Storage: ", end="") ASCIIColors.yellow(f"{args.doc_status_storage}") ASCIIColors.magenta("\n🛠️ System Configuration:") ASCIIColors.white(" ├─ Ollama Emulating Model: ", end="") ASCIIColors.yellow(f"{ollama_server_infos.LIGHTRAG_MODEL}") ASCIIColors.white(" ├─ Log Level: ", end="") ASCIIColors.yellow(f"{args.log_level}") ASCIIColors.white(" ├─ Verbose Debug: ", end="") ASCIIColors.yellow(f"{args.verbose}") ASCIIColors.white(" └─ Timeout: ", end="") ASCIIColors.yellow(f"{args.timeout if args.timeout else 'None (infinite)'}") # Server Status ASCIIColors.green("\n✨ Server starting up...\n") # Server Access Information protocol = "https" if args.ssl else "http" if args.host == "0.0.0.0": ASCIIColors.magenta("\n🌐 Server Access Information:") ASCIIColors.white(" ├─ Local Access: ", end="") ASCIIColors.yellow(f"{protocol}://localhost:{args.port}") ASCIIColors.white(" ├─ Remote Access: ", end="") ASCIIColors.yellow(f"{protocol}://:{args.port}") ASCIIColors.white(" ├─ API Documentation (local): ", end="") ASCIIColors.yellow(f"{protocol}://localhost:{args.port}/docs") ASCIIColors.white(" ├─ Alternative Documentation (local): ", end="") ASCIIColors.yellow(f"{protocol}://localhost:{args.port}/redoc") ASCIIColors.white(" └─ WebUI (local): ", end="") ASCIIColors.yellow(f"{protocol}://localhost:{args.port}/webui") ASCIIColors.yellow("\n📝 Note:") ASCIIColors.white(""" Since the server is running on 0.0.0.0: - Use 'localhost' or '127.0.0.1' for local access - Use your machine's IP address for remote access - To find your IP address: • Windows: Run 'ipconfig' in terminal • Linux/Mac: Run 'ifconfig' or 'ip addr' in terminal """) else: base_url = f"{protocol}://{args.host}:{args.port}" ASCIIColors.magenta("\n🌐 Server Access Information:") ASCIIColors.white(" ├─ Base URL: ", end="") ASCIIColors.yellow(f"{base_url}") ASCIIColors.white(" ├─ API Documentation: ", end="") ASCIIColors.yellow(f"{base_url}/docs") ASCIIColors.white(" └─ Alternative Documentation: ", end="") ASCIIColors.yellow(f"{base_url}/redoc") # Usage Examples ASCIIColors.magenta("\n📚 Quick Start Guide:") ASCIIColors.cyan(""" 1. Access the Swagger UI: Open your browser and navigate to the API documentation URL above 2. API Authentication:""") if args.key: ASCIIColors.cyan(""" Add the following header to your requests: X-API-Key: """) else: ASCIIColors.cyan(" No authentication required\n") ASCIIColors.cyan(""" 3. Basic Operations: - POST /upload_document: Upload new documents to RAG - POST /query: Query your document collection - GET /collections: List available collections 4. Monitor the server: - Check server logs for detailed operation information - Use healthcheck endpoint: GET /health """) # Security Notice if args.key: ASCIIColors.yellow("\n⚠️ Security Notice:") ASCIIColors.white(""" API Key authentication is enabled. Make sure to include the X-API-Key header in all your requests. """) ASCIIColors.green("Server is ready to accept connections! 🚀\n") # Ensure splash output flush to system log sys.stdout.flush() def parse_args() -> argparse.Namespace: """ Parse command line arguments with environment variable fallback Returns: argparse.Namespace: Parsed arguments """ parser = argparse.ArgumentParser( description="LightRAG FastAPI Server with separate working and input directories" ) parser.add_argument( "--kv-storage", default=get_env_value( "LIGHTRAG_KV_STORAGE", DefaultRAGStorageConfig.KV_STORAGE ), help=f"KV storage implementation (default: {DefaultRAGStorageConfig.KV_STORAGE})", ) parser.add_argument( "--doc-status-storage", default=get_env_value( "LIGHTRAG_DOC_STATUS_STORAGE", DefaultRAGStorageConfig.DOC_STATUS_STORAGE ), help=f"Document status storage implementation (default: {DefaultRAGStorageConfig.DOC_STATUS_STORAGE})", ) parser.add_argument( "--graph-storage", default=get_env_value( "LIGHTRAG_GRAPH_STORAGE", DefaultRAGStorageConfig.GRAPH_STORAGE ), help=f"Graph storage implementation (default: {DefaultRAGStorageConfig.GRAPH_STORAGE})", ) parser.add_argument( "--vector-storage", default=get_env_value( "LIGHTRAG_VECTOR_STORAGE", DefaultRAGStorageConfig.VECTOR_STORAGE ), help=f"Vector storage implementation (default: {DefaultRAGStorageConfig.VECTOR_STORAGE})", ) # Bindings configuration parser.add_argument( "--llm-binding", default=get_env_value("LLM_BINDING", "ollama"), help="LLM binding to be used. Supported: lollms, ollama, openai (default: from env or ollama)", ) parser.add_argument( "--embedding-binding", default=get_env_value("EMBEDDING_BINDING", "ollama"), help="Embedding binding to be used. Supported: lollms, ollama, openai (default: from env or ollama)", ) # Server configuration parser.add_argument( "--host", default=get_env_value("HOST", "0.0.0.0"), help="Server host (default: from env or 0.0.0.0)", ) parser.add_argument( "--port", type=int, default=get_env_value("PORT", 9621, int), help="Server port (default: from env or 9621)", ) # Directory configuration parser.add_argument( "--working-dir", default=get_env_value("WORKING_DIR", "./rag_storage"), help="Working directory for RAG storage (default: from env or ./rag_storage)", ) parser.add_argument( "--input-dir", default=get_env_value("INPUT_DIR", "./inputs"), help="Directory containing input documents (default: from env or ./inputs)", ) # LLM Model configuration parser.add_argument( "--llm-binding-host", default=get_env_value("LLM_BINDING_HOST", None), help="LLM server host URL. If not provided, defaults based on llm-binding:\n" + "- ollama: http://localhost:11434\n" + "- lollms: http://localhost:9600\n" + "- openai: https://api.openai.com/v1", ) default_llm_api_key = get_env_value("LLM_BINDING_API_KEY", None) parser.add_argument( "--llm-binding-api-key", default=default_llm_api_key, help="llm server API key (default: from env or empty string)", ) parser.add_argument( "--llm-model", default=get_env_value("LLM_MODEL", "mistral-nemo:latest"), help="LLM model name (default: from env or mistral-nemo:latest)", ) # Embedding model configuration parser.add_argument( "--embedding-binding-host", default=get_env_value("EMBEDDING_BINDING_HOST", None), help="Embedding server host URL. If not provided, defaults based on embedding-binding:\n" + "- ollama: http://localhost:11434\n" + "- lollms: http://localhost:9600\n" + "- openai: https://api.openai.com/v1", ) default_embedding_api_key = get_env_value("EMBEDDING_BINDING_API_KEY", "") parser.add_argument( "--embedding-binding-api-key", default=default_embedding_api_key, help="embedding server API key (default: from env or empty string)", ) parser.add_argument( "--embedding-model", default=get_env_value("EMBEDDING_MODEL", "bge-m3:latest"), help="Embedding model name (default: from env or bge-m3:latest)", ) parser.add_argument( "--chunk_size", default=get_env_value("CHUNK_SIZE", 1200), help="chunk chunk size default 1200", ) parser.add_argument( "--chunk_overlap_size", default=get_env_value("CHUNK_OVERLAP_SIZE", 100), help="chunk overlap size default 100", ) def timeout_type(value): if value is None or value == "None": return None return int(value) parser.add_argument( "--timeout", default=get_env_value("TIMEOUT", None, timeout_type), type=timeout_type, help="Timeout in seconds (useful when using slow AI). Use None for infinite timeout", ) # RAG configuration parser.add_argument( "--max-async", type=int, default=get_env_value("MAX_ASYNC", 4, int), help="Maximum async operations (default: from env or 4)", ) parser.add_argument( "--max-tokens", type=int, default=get_env_value("MAX_TOKENS", 32768, int), help="Maximum token size (default: from env or 32768)", ) parser.add_argument( "--embedding-dim", type=int, default=get_env_value("EMBEDDING_DIM", 1024, int), help="Embedding dimensions (default: from env or 1024)", ) parser.add_argument( "--max-embed-tokens", type=int, default=get_env_value("MAX_EMBED_TOKENS", 8192, int), help="Maximum embedding token size (default: from env or 8192)", ) # Logging configuration parser.add_argument( "--log-level", default=get_env_value("LOG_LEVEL", "INFO"), choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"], help="Logging level (default: from env or INFO)", ) parser.add_argument( "--key", type=str, default=get_env_value("LIGHTRAG_API_KEY", None), help="API key for authentication. This protects lightrag server against unauthorized access", ) # Optional https parameters parser.add_argument( "--ssl", action="store_true", default=get_env_value("SSL", False, bool), help="Enable HTTPS (default: from env or False)", ) parser.add_argument( "--ssl-certfile", default=get_env_value("SSL_CERTFILE", None), help="Path to SSL certificate file (required if --ssl is enabled)", ) parser.add_argument( "--ssl-keyfile", default=get_env_value("SSL_KEYFILE", None), help="Path to SSL private key file (required if --ssl is enabled)", ) parser.add_argument( "--auto-scan-at-startup", action="store_true", default=False, help="Enable automatic scanning when the program starts", ) parser.add_argument( "--history-turns", type=int, default=get_env_value("HISTORY_TURNS", 3, int), help="Number of conversation history turns to include (default: from env or 3)", ) # Search parameters parser.add_argument( "--top-k", type=int, default=get_env_value("TOP_K", 60, int), help="Number of most similar results to return (default: from env or 60)", ) parser.add_argument( "--cosine-threshold", type=float, default=get_env_value("COSINE_THRESHOLD", 0.2, float), help="Cosine similarity threshold (default: from env or 0.4)", ) # Ollama model name parser.add_argument( "--simulated-model-name", type=str, default=get_env_value( "SIMULATED_MODEL_NAME", ollama_server_infos.LIGHTRAG_MODEL ), help="Number of conversation history turns to include (default: from env or 3)", ) # Namespace parser.add_argument( "--namespace-prefix", type=str, default=get_env_value("NAMESPACE_PREFIX", ""), help="Prefix of the namespace", ) parser.add_argument( "--verbose", type=bool, default=get_env_value("VERBOSE", False, bool), help="Verbose debug output(default: from env or false)", ) args = parser.parse_args() # convert relative path to absolute path args.working_dir = os.path.abspath(args.working_dir) args.input_dir = os.path.abspath(args.input_dir) ollama_server_infos.LIGHTRAG_MODEL = args.simulated_model_name return args def create_app(args): # Set global top_k global global_top_k global_top_k = args.top_k # save top_k from args # Initialize verbose debug setting from lightrag.utils import set_verbose_debug set_verbose_debug(args.verbose) # Verify that bindings are correctly setup if args.llm_binding not in [ "lollms", "ollama", "openai", "openai-ollama", "azure_openai", ]: raise Exception("llm binding not supported") if args.embedding_binding not in ["lollms", "ollama", "openai", "azure_openai"]: raise Exception("embedding binding not supported") # Set default hosts if not provided if args.llm_binding_host is None: args.llm_binding_host = get_default_host(args.llm_binding) if args.embedding_binding_host is None: args.embedding_binding_host = get_default_host(args.embedding_binding) # Add SSL validation if args.ssl: if not args.ssl_certfile or not args.ssl_keyfile: raise Exception( "SSL certificate and key files must be provided when SSL is enabled" ) if not os.path.exists(args.ssl_certfile): raise Exception(f"SSL certificate file not found: {args.ssl_certfile}") if not os.path.exists(args.ssl_keyfile): raise Exception(f"SSL key file not found: {args.ssl_keyfile}") # Setup logging logging.basicConfig( format="%(levelname)s:%(message)s", level=getattr(logging, args.log_level) ) # Check if API key is provided either through env var or args api_key = os.getenv("LIGHTRAG_API_KEY") or args.key # Initialize document manager doc_manager = DocumentManager(args.input_dir) @asynccontextmanager async def lifespan(app: FastAPI): """Lifespan context manager for startup and shutdown events""" # Store background tasks app.state.background_tasks = set() try: # Initialize database connections await rag.initialize_storages() # Auto scan documents if enabled if args.auto_scan_at_startup: # Start scanning in background with progress_lock: if not scan_progress["is_scanning"]: scan_progress["is_scanning"] = True scan_progress["indexed_count"] = 0 scan_progress["progress"] = 0 # Create background task task = asyncio.create_task( run_scanning_process(rag, doc_manager) ) app.state.background_tasks.add(task) task.add_done_callback(app.state.background_tasks.discard) ASCIIColors.info( f"Started background scanning of documents from {args.input_dir}" ) else: ASCIIColors.info( "Skip document scanning(another scanning is active)" ) yield finally: # Clean up database connections await rag.finalize_storages() # Initialize FastAPI app = FastAPI( title="LightRAG API", description="API for querying text using LightRAG with separate storage and input directories" + "(With authentication)" if api_key else "", version=__api_version__, openapi_tags=[{"name": "api"}], lifespan=lifespan, ) def get_cors_origins(): """Get allowed origins from environment variable Returns a list of allowed origins, defaults to ["*"] if not set """ origins_str = os.getenv("CORS_ORIGINS", "*") if origins_str == "*": return ["*"] return [origin.strip() for origin in origins_str.split(",")] # Add CORS middleware app.add_middleware( CORSMiddleware, allow_origins=get_cors_origins(), allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # Create the optional API key dependency optional_api_key = get_api_key_dependency(api_key) # Create working directory if it doesn't exist Path(args.working_dir).mkdir(parents=True, exist_ok=True) if args.llm_binding == "lollms" or args.embedding_binding == "lollms": from lightrag.llm.lollms import lollms_model_complete, lollms_embed if args.llm_binding == "ollama" or args.embedding_binding == "ollama": from lightrag.llm.ollama import ollama_model_complete, ollama_embed if args.llm_binding == "openai" or args.embedding_binding == "openai": from lightrag.llm.openai import openai_complete_if_cache, openai_embed if args.llm_binding == "azure_openai" or args.embedding_binding == "azure_openai": from lightrag.llm.azure_openai import ( azure_openai_complete_if_cache, azure_openai_embed, ) if args.llm_binding_host == "openai-ollama" or args.embedding_binding == "ollama": from lightrag.llm.openai import openai_complete_if_cache from lightrag.llm.ollama import ollama_embed async def openai_alike_model_complete( prompt, system_prompt=None, history_messages=None, keyword_extraction=False, **kwargs, ) -> str: keyword_extraction = kwargs.pop("keyword_extraction", None) if keyword_extraction: kwargs["response_format"] = GPTKeywordExtractionFormat if history_messages is None: history_messages = [] return await openai_complete_if_cache( args.llm_model, prompt, system_prompt=system_prompt, history_messages=history_messages, base_url=args.llm_binding_host, api_key=args.llm_binding_api_key, **kwargs, ) async def azure_openai_model_complete( prompt, system_prompt=None, history_messages=None, keyword_extraction=False, **kwargs, ) -> str: keyword_extraction = kwargs.pop("keyword_extraction", None) if keyword_extraction: kwargs["response_format"] = GPTKeywordExtractionFormat if history_messages is None: history_messages = [] return await azure_openai_complete_if_cache( args.llm_model, prompt, system_prompt=system_prompt, history_messages=history_messages, base_url=args.llm_binding_host, api_key=os.getenv("AZURE_OPENAI_API_KEY"), api_version=os.getenv("AZURE_OPENAI_API_VERSION", "2024-08-01-preview"), **kwargs, ) embedding_func = EmbeddingFunc( embedding_dim=args.embedding_dim, max_token_size=args.max_embed_tokens, func=lambda texts: lollms_embed( texts, embed_model=args.embedding_model, host=args.embedding_binding_host, api_key=args.embedding_binding_api_key, ) if args.embedding_binding == "lollms" else ollama_embed( texts, embed_model=args.embedding_model, host=args.embedding_binding_host, api_key=args.embedding_binding_api_key, ) if args.embedding_binding == "ollama" else azure_openai_embed( texts, model=args.embedding_model, # no host is used for openai, api_key=args.embedding_binding_api_key, ) if args.embedding_binding == "azure_openai" else openai_embed( texts, model=args.embedding_model, base_url=args.embedding_binding_host, api_key=args.embedding_binding_api_key, ), ) # Initialize RAG if args.llm_binding in ["lollms", "ollama", "openai-ollama"]: rag = LightRAG( working_dir=args.working_dir, llm_model_func=lollms_model_complete if args.llm_binding == "lollms" else ollama_model_complete if args.llm_binding == "ollama" else openai_alike_model_complete, llm_model_name=args.llm_model, llm_model_max_async=args.max_async, llm_model_max_token_size=args.max_tokens, chunk_token_size=int(args.chunk_size), chunk_overlap_token_size=int(args.chunk_overlap_size), llm_model_kwargs={ "host": args.llm_binding_host, "timeout": args.timeout, "options": {"num_ctx": args.max_tokens}, "api_key": args.llm_binding_api_key, } if args.llm_binding == "lollms" or args.llm_binding == "ollama" else {}, embedding_func=embedding_func, kv_storage=args.kv_storage, graph_storage=args.graph_storage, vector_storage=args.vector_storage, doc_status_storage=args.doc_status_storage, vector_db_storage_cls_kwargs={ "cosine_better_than_threshold": args.cosine_threshold }, enable_llm_cache_for_entity_extract=False, # set to True for debuging to reduce llm fee embedding_cache_config={ "enabled": True, "similarity_threshold": 0.95, "use_llm_check": False, }, log_level=args.log_level, namespace_prefix=args.namespace_prefix, auto_manage_storages_states=False, ) else: rag = LightRAG( working_dir=args.working_dir, llm_model_func=azure_openai_model_complete if args.llm_binding == "azure_openai" else openai_alike_model_complete, chunk_token_size=int(args.chunk_size), chunk_overlap_token_size=int(args.chunk_overlap_size), llm_model_kwargs={ "timeout": args.timeout, }, llm_model_name=args.llm_model, llm_model_max_async=args.max_async, llm_model_max_token_size=args.max_tokens, embedding_func=embedding_func, kv_storage=args.kv_storage, graph_storage=args.graph_storage, vector_storage=args.vector_storage, doc_status_storage=args.doc_status_storage, vector_db_storage_cls_kwargs={ "cosine_better_than_threshold": args.cosine_threshold }, enable_llm_cache_for_entity_extract=False, # set to True for debuging to reduce llm fee embedding_cache_config={ "enabled": True, "similarity_threshold": 0.95, "use_llm_check": False, }, log_level=args.log_level, namespace_prefix=args.namespace_prefix, auto_manage_storages_states=False, ) # Add routes app.include_router(create_document_routes(rag, doc_manager, api_key)) app.include_router(create_query_routes(rag, api_key, args.top_k)) app.include_router(create_graph_routes(rag, api_key)) # Add Ollama API routes ollama_api = OllamaAPI(rag, top_k=args.top_k) app.include_router(ollama_api.router, prefix="/api") @app.get("/health", dependencies=[Depends(optional_api_key)]) async def get_status(): """Get current system status""" return { "status": "healthy", "working_directory": str(args.working_dir), "input_directory": str(args.input_dir), "configuration": { # LLM configuration binding/host address (if applicable)/model (if applicable) "llm_binding": args.llm_binding, "llm_binding_host": args.llm_binding_host, "llm_model": args.llm_model, # embedding model configuration binding/host address (if applicable)/model (if applicable) "embedding_binding": args.embedding_binding, "embedding_binding_host": args.embedding_binding_host, "embedding_model": args.embedding_model, "max_tokens": args.max_tokens, "kv_storage": args.kv_storage, "doc_status_storage": args.doc_status_storage, "graph_storage": args.graph_storage, "vector_storage": args.vector_storage, }, } # Webui mount webui/index.html static_dir = Path(__file__).parent / "webui" static_dir.mkdir(exist_ok=True) app.mount( "/webui", StaticFiles(directory=static_dir, html=True, check_dir=True), name="webui", ) @app.get("/webui/") async def webui_root(): return FileResponse(static_dir / "index.html") return app def main(): args = parse_args() import uvicorn app = create_app(args) display_splash_screen(args) uvicorn_config = { "app": app, "host": args.host, "port": args.port, } if args.ssl: uvicorn_config.update( { "ssl_certfile": args.ssl_certfile, "ssl_keyfile": args.ssl_keyfile, } ) uvicorn.run(**uvicorn_config) if __name__ == "__main__": main()