import asyncio import logging import os import time from dotenv import load_dotenv from lightrag import LightRAG, QueryParam from lightrag.llm.zhipu import zhipu_complete from lightrag.llm.ollama import ollama_embedding from lightrag.utils import EmbeddingFunc from lightrag.kg.shared_storage import initialize_pipeline_status load_dotenv() ROOT_DIR = os.environ.get("ROOT_DIR") WORKING_DIR = f"{ROOT_DIR}/dickens-pg" logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.INFO) if not os.path.exists(WORKING_DIR): os.mkdir(WORKING_DIR) # AGE os.environ["AGE_GRAPH_NAME"] = "dickens" os.environ["POSTGRES_HOST"] = "localhost" os.environ["POSTGRES_PORT"] = "15432" os.environ["POSTGRES_USER"] = "rag" os.environ["POSTGRES_PASSWORD"] = "rag" os.environ["POSTGRES_DATABASE"] = "rag" async def initialize_rag(): rag = LightRAG( working_dir=WORKING_DIR, llm_model_func=zhipu_complete, llm_model_name="glm-4-flashx", llm_model_max_async=4, llm_model_max_token_size=32768, enable_llm_cache_for_entity_extract=True, embedding_func=EmbeddingFunc( embedding_dim=1024, max_token_size=8192, func=lambda texts: ollama_embedding( texts, embed_model="bge-m3", host="http://localhost:11434" ), ), kv_storage="PGKVStorage", doc_status_storage="PGDocStatusStorage", graph_storage="PGGraphStorage", vector_storage="PGVectorStorage", auto_manage_storages_states=False, ) await rag.initialize_storages() await initialize_pipeline_status() return rag async def main(): # Initialize RAG instance rag = asyncio.run(initialize_rag()) # add embedding_func for graph database, it's deleted in commit 5661d76860436f7bf5aef2e50d9ee4a59660146c rag.chunk_entity_relation_graph.embedding_func = rag.embedding_func with open(f"{ROOT_DIR}/book.txt", "r", encoding="utf-8") as f: await rag.ainsert(f.read()) print("==== Trying to test the rag queries ====") print("**** Start Naive Query ****") start_time = time.time() # Perform naive search print( await rag.aquery( "What are the top themes in this story?", param=QueryParam(mode="naive") ) ) print(f"Naive Query Time: {time.time() - start_time} seconds") # Perform local search print("**** Start Local Query ****") start_time = time.time() print( await rag.aquery( "What are the top themes in this story?", param=QueryParam(mode="local") ) ) print(f"Local Query Time: {time.time() - start_time} seconds") # Perform global search print("**** Start Global Query ****") start_time = time.time() print( await rag.aquery( "What are the top themes in this story?", param=QueryParam(mode="global") ) ) print(f"Global Query Time: {time.time() - start_time}") # Perform hybrid search print("**** Start Hybrid Query ****") print( await rag.aquery( "What are the top themes in this story?", param=QueryParam(mode="hybrid") ) ) print(f"Hybrid Query Time: {time.time() - start_time} seconds") if __name__ == "__main__": asyncio.run(main())