import os import logging from lightrag import LightRAG, QueryParam from lightrag.llm.zhipu import zhipu_complete, zhipu_embedding from lightrag.utils import EmbeddingFunc WORKING_DIR = "./dickens" logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.INFO) if not os.path.exists(WORKING_DIR): os.mkdir(WORKING_DIR) api_key = os.environ.get("ZHIPUAI_API_KEY") if api_key is None: raise Exception("Please set ZHIPU_API_KEY in your environment") rag = LightRAG( working_dir=WORKING_DIR, llm_model_func=zhipu_complete, llm_model_name="glm-4-flashx", # Using the most cost/performance balance model, but you can change it here. llm_model_max_async=4, llm_model_max_token_size=32768, embedding_func=EmbeddingFunc( embedding_dim=2048, # Zhipu embedding-3 dimension max_token_size=8192, func=lambda texts: zhipu_embedding(texts), ), ) with open("./book.txt", "r", encoding="utf-8") as f: rag.insert(f.read()) # Perform naive search print( rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")) ) # Perform local search print( rag.query("What are the top themes in this story?", param=QueryParam(mode="local")) ) # Perform global search print( rag.query("What are the top themes in this story?", param=QueryParam(mode="global")) ) # Perform hybrid search print( rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")) )