""" Hugging face LLM Interface Module ========================== This module provides interfaces for interacting with Hugging face's language models, including text generation and embedding capabilities. Author: Lightrag team Created: 2024-01-24 License: MIT License Copyright (c) 2024 Lightrag Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: Version: 1.0.0 Change Log: - 1.0.0 (2024-01-24): Initial release * Added async chat completion support * Added embedding generation * Added stream response capability Dependencies: - transformers - numpy - pipmaster - Python >= 3.10 Usage: from llm_interfaces.hf import hf_model_complete, hf_embed """ __version__ = "1.0.0" __author__ = "lightrag Team" __status__ = "Production" import copy import os import pipmaster as pm # Pipmaster for dynamic library install # install specific modules if not pm.is_installed("transformers"): pm.install("transformers") if not pm.is_installed("torch"): pm.install("torch") if not pm.is_installed("tenacity"): pm.install("tenacity") from transformers import AutoTokenizer, AutoModelForCausalLM from functools import lru_cache from tenacity import ( retry, stop_after_attempt, wait_exponential, retry_if_exception_type, ) from lightrag.exceptions import ( APIConnectionError, RateLimitError, APITimeoutError, ) from lightrag.utils import ( locate_json_string_body_from_string, ) import torch import numpy as np os.environ["TOKENIZERS_PARALLELISM"] = "false" @lru_cache(maxsize=1) def initialize_hf_model(model_name): hf_tokenizer = AutoTokenizer.from_pretrained( model_name, device_map="auto", trust_remote_code=True ) hf_model = AutoModelForCausalLM.from_pretrained( model_name, device_map="auto", trust_remote_code=True ) if hf_tokenizer.pad_token is None: hf_tokenizer.pad_token = hf_tokenizer.eos_token return hf_model, hf_tokenizer @retry( stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10), retry=retry_if_exception_type( (RateLimitError, APIConnectionError, APITimeoutError) ), ) async def hf_model_if_cache( model, prompt, system_prompt=None, history_messages=[], **kwargs, ) -> str: model_name = model hf_model, hf_tokenizer = initialize_hf_model(model_name) messages = [] if system_prompt: messages.append({"role": "system", "content": system_prompt}) messages.extend(history_messages) messages.append({"role": "user", "content": prompt}) kwargs.pop("hashing_kv", None) input_prompt = "" try: input_prompt = hf_tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) except Exception: try: ori_message = copy.deepcopy(messages) if messages[0]["role"] == "system": messages[1]["content"] = ( "" + messages[0]["content"] + "\n" + messages[1]["content"] ) messages = messages[1:] input_prompt = hf_tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) except Exception: len_message = len(ori_message) for msgid in range(len_message): input_prompt = ( input_prompt + "<" + ori_message[msgid]["role"] + ">" + ori_message[msgid]["content"] + "\n" ) input_ids = hf_tokenizer( input_prompt, return_tensors="pt", padding=True, truncation=True ).to("cuda") inputs = {k: v.to(hf_model.device) for k, v in input_ids.items()} output = hf_model.generate( **input_ids, max_new_tokens=512, num_return_sequences=1, early_stopping=True ) response_text = hf_tokenizer.decode( output[0][len(inputs["input_ids"][0]) :], skip_special_tokens=True ) return response_text async def hf_model_complete( prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs ) -> str: keyword_extraction = kwargs.pop("keyword_extraction", None) model_name = kwargs["hashing_kv"].global_config["llm_model_name"] result = await hf_model_if_cache( model_name, prompt, system_prompt=system_prompt, history_messages=history_messages, **kwargs, ) if keyword_extraction: # TODO: use JSON API return locate_json_string_body_from_string(result) return result async def hf_embed(texts: list[str], tokenizer, embed_model) -> np.ndarray: device = next(embed_model.parameters()).device input_ids = tokenizer( texts, return_tensors="pt", padding=True, truncation=True ).input_ids.to(device) with torch.no_grad(): outputs = embed_model(input_ids) embeddings = outputs.last_hidden_state.mean(dim=1) if embeddings.dtype == torch.bfloat16: return embeddings.detach().to(torch.float32).cpu().numpy() else: return embeddings.detach().cpu().numpy()