""" SiliconCloud Embedding Interface Module ========================== This module provides interfaces for interacting with SiliconCloud system, including embedding capabilities. Author: Lightrag team Created: 2024-01-24 License: MIT License Copyright (c) 2024 Lightrag Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: Version: 1.0.0 Change Log: - 1.0.0 (2024-01-24): Initial release * Added embedding generation Dependencies: - tenacity - numpy - pipmaster - Python >= 3.10 Usage: from llm_interfaces.siliconcloud import siliconcloud_model_complete, siliconcloud_embed """ __version__ = "1.0.0" __author__ = "lightrag Team" __status__ = "Production" import sys if sys.version_info < (3, 9): pass else: pass import pipmaster as pm # Pipmaster for dynamic library install # install specific modules if not pm.is_installed("lmdeploy"): pm.install("lmdeploy") from openai import ( APIConnectionError, RateLimitError, APITimeoutError, ) from tenacity import ( retry, stop_after_attempt, wait_exponential, retry_if_exception_type, ) import numpy as np import aiohttp import base64 import struct @retry( stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=60), retry=retry_if_exception_type( (RateLimitError, APIConnectionError, APITimeoutError) ), ) async def siliconcloud_embedding( texts: list[str], model: str = "netease-youdao/bce-embedding-base_v1", base_url: str = "https://api.siliconflow.cn/v1/embeddings", max_token_size: int = 512, api_key: str = None, ) -> np.ndarray: if api_key and not api_key.startswith("Bearer "): api_key = "Bearer " + api_key headers = {"Authorization": api_key, "Content-Type": "application/json"} truncate_texts = [text[0:max_token_size] for text in texts] payload = {"model": model, "input": truncate_texts, "encoding_format": "base64"} base64_strings = [] async with aiohttp.ClientSession() as session: async with session.post(base_url, headers=headers, json=payload) as response: content = await response.json() if "code" in content: raise ValueError(content) base64_strings = [item["embedding"] for item in content["data"]] embeddings = [] for string in base64_strings: decode_bytes = base64.b64decode(string) n = len(decode_bytes) // 4 float_array = struct.unpack("<" + "f" * n, decode_bytes) embeddings.append(float_array) return np.array(embeddings)