import os import asyncio from lightrag import LightRAG, QueryParam from lightrag.llm import openai_complete_if_cache, openai_embedding from lightrag.utils import EmbeddingFunc import numpy as np WORKING_DIR = "./dickens" if not os.path.exists(WORKING_DIR): os.mkdir(WORKING_DIR) async def llm_model_func( prompt, system_prompt=None, history_messages=[], **kwargs ) -> str: return await openai_complete_if_cache( "solar-mini", prompt, system_prompt=system_prompt, history_messages=history_messages, api_key=os.getenv("UPSTAGE_API_KEY"), base_url="https://api.upstage.ai/v1/solar", **kwargs ) async def embedding_func(texts: list[str]) -> np.ndarray: return await openai_embedding( texts, model="solar-embedding-1-large-query", api_key=os.getenv("UPSTAGE_API_KEY"), base_url="https://api.upstage.ai/v1/solar" ) # function test async def test_funcs(): result = await llm_model_func("How are you?") print("llm_model_func: ", result) result = await embedding_func(["How are you?"]) print("embedding_func: ", result) asyncio.run(test_funcs()) rag = LightRAG( working_dir=WORKING_DIR, llm_model_func=llm_model_func, embedding_func=EmbeddingFunc( embedding_dim=4096, max_token_size=8192, func=embedding_func ) ) with open("./book.txt") as f: rag.insert(f.read()) # Perform naive search print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))) # Perform local search print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))) # Perform global search print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))) # Perform hybrid search print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))