import os from lightrag import LightRAG, QueryParam from lightrag.llm import ollama_model_complete, ollama_embedding from lightrag.utils import EmbeddingFunc WORKING_DIR = "./dickens" if not os.path.exists(WORKING_DIR): os.mkdir(WORKING_DIR) rag = LightRAG( working_dir=WORKING_DIR, llm_model_func=ollama_model_complete, llm_model_name='your_model_name', embedding_func=EmbeddingFunc( embedding_dim=768, max_token_size=8192, func=lambda texts: ollama_embedding( texts, embed_model="nomic-embed-text" ) ), ) with open("./book.txt") as f: rag.insert(f.read()) # Perform naive search print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))) # Perform local search print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))) # Perform global search print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))) # Perform hybrid search print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))