from __future__ import annotations from abc import ABC, abstractmethod from enum import Enum import os from dotenv import load_dotenv from dataclasses import dataclass, field from typing import ( Any, Literal, TypedDict, TypeVar, Callable, ) from .utils import EmbeddingFunc from .types import KnowledgeGraph from .constants import GRAPH_FIELD_SEP # use the .env that is inside the current folder # allows to use different .env file for each lightrag instance # the OS environment variables take precedence over the .env file load_dotenv(dotenv_path=".env", override=False) class TextChunkSchema(TypedDict): tokens: int content: str full_doc_id: str chunk_order_index: int T = TypeVar("T") @dataclass class QueryParam: """Configuration parameters for query execution in LightRAG.""" mode: Literal["local", "global", "hybrid", "naive", "mix", "bypass"] = "global" """Specifies the retrieval mode: - "local": Focuses on context-dependent information. - "global": Utilizes global knowledge. - "hybrid": Combines local and global retrieval methods. - "naive": Performs a basic search without advanced techniques. - "mix": Integrates knowledge graph and vector retrieval. """ only_need_context: bool = False """If True, only returns the retrieved context without generating a response.""" only_need_prompt: bool = False """If True, only returns the generated prompt without producing a response.""" response_type: str = "Multiple Paragraphs" """Defines the response format. Examples: 'Multiple Paragraphs', 'Single Paragraph', 'Bullet Points'.""" stream: bool = False """If True, enables streaming output for real-time responses.""" top_k: int = int(os.getenv("TOP_K", "60")) """Number of top items to retrieve. Represents entities in 'local' mode and relationships in 'global' mode.""" max_token_for_text_unit: int = int(os.getenv("MAX_TOKEN_TEXT_CHUNK", "4000")) """Maximum number of tokens allowed for each retrieved text chunk.""" max_token_for_global_context: int = int( os.getenv("MAX_TOKEN_RELATION_DESC", "4000") ) """Maximum number of tokens allocated for relationship descriptions in global retrieval.""" max_token_for_local_context: int = int(os.getenv("MAX_TOKEN_ENTITY_DESC", "4000")) """Maximum number of tokens allocated for entity descriptions in local retrieval.""" hl_keywords: list[str] = field(default_factory=list) """List of high-level keywords to prioritize in retrieval.""" ll_keywords: list[str] = field(default_factory=list) """List of low-level keywords to refine retrieval focus.""" conversation_history: list[dict[str, str]] = field(default_factory=list) """Stores past conversation history to maintain context. Format: [{"role": "user/assistant", "content": "message"}]. """ history_turns: int = 3 """Number of complete conversation turns (user-assistant pairs) to consider in the response context.""" ids: list[str] | None = None """List of ids to filter the results.""" model_func: Callable[..., object] | None = None """Optional override for the LLM model function to use for this specific query. If provided, this will be used instead of the global model function. This allows using different models for different query modes. """ user_prompt: str | None = None """User-provided prompt for the query. If proivded, this will be use instead of the default vaulue from prompt template. """ @dataclass class StorageNameSpace(ABC): namespace: str global_config: dict[str, Any] async def initialize(self): """Initialize the storage""" pass async def finalize(self): """Finalize the storage""" pass @abstractmethod async def index_done_callback(self) -> None: """Commit the storage operations after indexing""" @abstractmethod async def drop(self) -> dict[str, str]: """Drop all data from storage and clean up resources This abstract method defines the contract for dropping all data from a storage implementation. Each storage type must implement this method to: 1. Clear all data from memory and/or external storage 2. Remove any associated storage files if applicable 3. Reset the storage to its initial state 4. Handle cleanup of any resources 5. Notify other processes if necessary 6. This action should persistent the data to disk immediately. Returns: dict[str, str]: Operation status and message with the following format: { "status": str, # "success" or "error" "message": str # "data dropped" on success, error details on failure } Implementation specific: - On success: return {"status": "success", "message": "data dropped"} - On failure: return {"status": "error", "message": ""} - If not supported: return {"status": "error", "message": "unsupported"} """ @dataclass class BaseVectorStorage(StorageNameSpace, ABC): embedding_func: EmbeddingFunc cosine_better_than_threshold: float = field(default=0.2) meta_fields: set[str] = field(default_factory=set) @abstractmethod async def query( self, query: str, top_k: int, ids: list[str] | None = None ) -> list[dict[str, Any]]: """Query the vector storage and retrieve top_k results.""" @abstractmethod async def upsert(self, data: dict[str, dict[str, Any]]) -> None: """Insert or update vectors in the storage. Importance notes for in-memory storage: 1. Changes will be persisted to disk during the next index_done_callback 2. Only one process should updating the storage at a time before index_done_callback, KG-storage-log should be used to avoid data corruption """ @abstractmethod async def delete_entity(self, entity_name: str) -> None: """Delete a single entity by its name. Importance notes for in-memory storage: 1. Changes will be persisted to disk during the next index_done_callback 2. Only one process should updating the storage at a time before index_done_callback, KG-storage-log should be used to avoid data corruption """ @abstractmethod async def delete_entity_relation(self, entity_name: str) -> None: """Delete relations for a given entity. Importance notes for in-memory storage: 1. Changes will be persisted to disk during the next index_done_callback 2. Only one process should updating the storage at a time before index_done_callback, KG-storage-log should be used to avoid data corruption """ @abstractmethod async def get_by_id(self, id: str) -> dict[str, Any] | None: """Get vector data by its ID Args: id: The unique identifier of the vector Returns: The vector data if found, or None if not found """ pass @abstractmethod async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]: """Get multiple vector data by their IDs Args: ids: List of unique identifiers Returns: List of vector data objects that were found """ pass @abstractmethod async def delete(self, ids: list[str]): """Delete vectors with specified IDs Importance notes for in-memory storage: 1. Changes will be persisted to disk during the next index_done_callback 2. Only one process should updating the storage at a time before index_done_callback, KG-storage-log should be used to avoid data corruption Args: ids: List of vector IDs to be deleted """ @dataclass class BaseKVStorage(StorageNameSpace, ABC): embedding_func: EmbeddingFunc @abstractmethod async def get_by_id(self, id: str) -> dict[str, Any] | None: """Get value by id""" @abstractmethod async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]: """Get values by ids""" @abstractmethod async def filter_keys(self, keys: set[str]) -> set[str]: """Return un-exist keys""" @abstractmethod async def upsert(self, data: dict[str, dict[str, Any]]) -> None: """Upsert data Importance notes for in-memory storage: 1. Changes will be persisted to disk during the next index_done_callback 2. update flags to notify other processes that data persistence is needed """ @abstractmethod async def delete(self, ids: list[str]) -> None: """Delete specific records from storage by their IDs Importance notes for in-memory storage: 1. Changes will be persisted to disk during the next index_done_callback 2. update flags to notify other processes that data persistence is needed Args: ids (list[str]): List of document IDs to be deleted from storage Returns: None """ async def drop_cache_by_modes(self, modes: list[str] | None = None) -> bool: """Delete specific records from storage by cache mode Importance notes for in-memory storage: 1. Changes will be persisted to disk during the next index_done_callback 2. update flags to notify other processes that data persistence is needed Args: modes (list[str]): List of cache modes to be dropped from storage Returns: True: if the cache drop successfully False: if the cache drop failed, or the cache mode is not supported """ # async def drop_cache_by_chunk_ids(self, chunk_ids: list[str] | None = None) -> bool: # """Delete specific cache records from storage by chunk IDs # Importance notes for in-memory storage: # 1. Changes will be persisted to disk during the next index_done_callback # 2. update flags to notify other processes that data persistence is needed # Args: # chunk_ids (list[str]): List of chunk IDs to be dropped from storage # Returns: # True: if the cache drop successfully # False: if the cache drop failed, or the operation is not supported # """ @dataclass class BaseGraphStorage(StorageNameSpace, ABC): embedding_func: EmbeddingFunc @abstractmethod async def has_node(self, node_id: str) -> bool: """Check if a node exists in the graph. Args: node_id: The ID of the node to check Returns: True if the node exists, False otherwise """ @abstractmethod async def has_edge(self, source_node_id: str, target_node_id: str) -> bool: """Check if an edge exists between two nodes. Args: source_node_id: The ID of the source node target_node_id: The ID of the target node Returns: True if the edge exists, False otherwise """ @abstractmethod async def node_degree(self, node_id: str) -> int: """Get the degree (number of connected edges) of a node. Args: node_id: The ID of the node Returns: The number of edges connected to the node """ @abstractmethod async def edge_degree(self, src_id: str, tgt_id: str) -> int: """Get the total degree of an edge (sum of degrees of its source and target nodes). Args: src_id: The ID of the source node tgt_id: The ID of the target node Returns: The sum of the degrees of the source and target nodes """ @abstractmethod async def get_node(self, node_id: str) -> dict[str, str] | None: """Get node by its ID, returning only node properties. Args: node_id: The ID of the node to retrieve Returns: A dictionary of node properties if found, None otherwise """ @abstractmethod async def get_edge( self, source_node_id: str, target_node_id: str ) -> dict[str, str] | None: """Get edge properties between two nodes. Args: source_node_id: The ID of the source node target_node_id: The ID of the target node Returns: A dictionary of edge properties if found, None otherwise """ @abstractmethod async def get_node_edges(self, source_node_id: str) -> list[tuple[str, str]] | None: """Get all edges connected to a node. Args: source_node_id: The ID of the node to get edges for Returns: A list of (source_id, target_id) tuples representing edges, or None if the node doesn't exist """ async def get_nodes_batch(self, node_ids: list[str]) -> dict[str, dict]: """Get nodes as a batch using UNWIND Default implementation fetches nodes one by one. Override this method for better performance in storage backends that support batch operations. """ result = {} for node_id in node_ids: node = await self.get_node(node_id) if node is not None: result[node_id] = node return result async def node_degrees_batch(self, node_ids: list[str]) -> dict[str, int]: """Node degrees as a batch using UNWIND Default implementation fetches node degrees one by one. Override this method for better performance in storage backends that support batch operations. """ result = {} for node_id in node_ids: degree = await self.node_degree(node_id) result[node_id] = degree return result async def edge_degrees_batch( self, edge_pairs: list[tuple[str, str]] ) -> dict[tuple[str, str], int]: """Edge degrees as a batch using UNWIND also uses node_degrees_batch Default implementation calculates edge degrees one by one. Override this method for better performance in storage backends that support batch operations. """ result = {} for src_id, tgt_id in edge_pairs: degree = await self.edge_degree(src_id, tgt_id) result[(src_id, tgt_id)] = degree return result async def get_edges_batch( self, pairs: list[dict[str, str]] ) -> dict[tuple[str, str], dict]: """Get edges as a batch using UNWIND Default implementation fetches edges one by one. Override this method for better performance in storage backends that support batch operations. """ result = {} for pair in pairs: src_id = pair["src"] tgt_id = pair["tgt"] edge = await self.get_edge(src_id, tgt_id) if edge is not None: result[(src_id, tgt_id)] = edge return result async def get_nodes_edges_batch( self, node_ids: list[str] ) -> dict[str, list[tuple[str, str]]]: """Get nodes edges as a batch using UNWIND Default implementation fetches node edges one by one. Override this method for better performance in storage backends that support batch operations. """ result = {} for node_id in node_ids: edges = await self.get_node_edges(node_id) result[node_id] = edges if edges is not None else [] return result @abstractmethod async def get_nodes_by_chunk_ids(self, chunk_ids: list[str]) -> list[dict]: """Get all nodes that are associated with the given chunk_ids. Args: chunk_ids (list[str]): A list of chunk IDs to find associated nodes for. Returns: list[dict]: A list of nodes, where each node is a dictionary of its properties. An empty list if no matching nodes are found. """ # Default implementation iterates through all nodes, which is inefficient. # This method should be overridden by subclasses for better performance. all_nodes = [] all_labels = await self.get_all_labels() for label in all_labels: node = await self.get_node(label) if node and "source_id" in node: source_ids = set(node["source_id"].split(GRAPH_FIELD_SEP)) if not source_ids.isdisjoint(chunk_ids): all_nodes.append(node) return all_nodes @abstractmethod async def get_edges_by_chunk_ids(self, chunk_ids: list[str]) -> list[dict]: """Get all edges that are associated with the given chunk_ids. Args: chunk_ids (list[str]): A list of chunk IDs to find associated edges for. Returns: list[dict]: A list of edges, where each edge is a dictionary of its properties. An empty list if no matching edges are found. """ # Default implementation iterates through all nodes and their edges, which is inefficient. # This method should be overridden by subclasses for better performance. all_edges = [] all_labels = await self.get_all_labels() processed_edges = set() for label in all_labels: edges = await self.get_node_edges(label) if edges: for src_id, tgt_id in edges: # Avoid processing the same edge twice in an undirected graph edge_tuple = tuple(sorted((src_id, tgt_id))) if edge_tuple in processed_edges: continue processed_edges.add(edge_tuple) edge = await self.get_edge(src_id, tgt_id) if edge and "source_id" in edge: source_ids = set(edge["source_id"].split(GRAPH_FIELD_SEP)) if not source_ids.isdisjoint(chunk_ids): # Add source and target to the edge dict for easier processing later edge_with_nodes = edge.copy() edge_with_nodes["source"] = src_id edge_with_nodes["target"] = tgt_id all_edges.append(edge_with_nodes) return all_edges @abstractmethod async def upsert_node(self, node_id: str, node_data: dict[str, str]) -> None: """Insert a new node or update an existing node in the graph. Importance notes for in-memory storage: 1. Changes will be persisted to disk during the next index_done_callback 2. Only one process should updating the storage at a time before index_done_callback, KG-storage-log should be used to avoid data corruption Args: node_id: The ID of the node to insert or update node_data: A dictionary of node properties """ @abstractmethod async def upsert_edge( self, source_node_id: str, target_node_id: str, edge_data: dict[str, str] ) -> None: """Insert a new edge or update an existing edge in the graph. Importance notes for in-memory storage: 1. Changes will be persisted to disk during the next index_done_callback 2. Only one process should updating the storage at a time before index_done_callback, KG-storage-log should be used to avoid data corruption Args: source_node_id: The ID of the source node target_node_id: The ID of the target node edge_data: A dictionary of edge properties """ @abstractmethod async def delete_node(self, node_id: str) -> None: """Delete a node from the graph. Importance notes for in-memory storage: 1. Changes will be persisted to disk during the next index_done_callback 2. Only one process should updating the storage at a time before index_done_callback, KG-storage-log should be used to avoid data corruption Args: node_id: The ID of the node to delete """ @abstractmethod async def remove_nodes(self, nodes: list[str]): """Delete multiple nodes Importance notes: 1. Changes will be persisted to disk during the next index_done_callback 2. Only one process should updating the storage at a time before index_done_callback, KG-storage-log should be used to avoid data corruption Args: nodes: List of node IDs to be deleted """ @abstractmethod async def remove_edges(self, edges: list[tuple[str, str]]): """Delete multiple edges Importance notes: 1. Changes will be persisted to disk during the next index_done_callback 2. Only one process should updating the storage at a time before index_done_callback, KG-storage-log should be used to avoid data corruption Args: edges: List of edges to be deleted, each edge is a (source, target) tuple """ @abstractmethod async def get_all_labels(self) -> list[str]: """Get all labels in the graph. Returns: A list of all node labels in the graph, sorted alphabetically """ @abstractmethod async def get_knowledge_graph( self, node_label: str, max_depth: int = 3, max_nodes: int = 1000 ) -> KnowledgeGraph: """ Retrieve a connected subgraph of nodes where the label includes the specified `node_label`. Args: node_label: Label of the starting node,* means all nodes max_depth: Maximum depth of the subgraph, Defaults to 3 max_nodes: Maxiumu nodes to return, Defaults to 1000(BFS if possible) Returns: KnowledgeGraph object containing nodes and edges, with an is_truncated flag indicating whether the graph was truncated due to max_nodes limit """ class DocStatus(str, Enum): """Document processing status""" PENDING = "pending" PROCESSING = "processing" PROCESSED = "processed" FAILED = "failed" @dataclass class DocProcessingStatus: """Document processing status data structure""" content: str """Original content of the document""" content_summary: str """First 100 chars of document content, used for preview""" content_length: int """Total length of document""" file_path: str """File path of the document""" status: DocStatus """Current processing status""" created_at: str """ISO format timestamp when document was created""" updated_at: str """ISO format timestamp when document was last updated""" chunks_count: int | None = None """Number of chunks after splitting, used for processing""" error: str | None = None """Error message if failed""" metadata: dict[str, Any] = field(default_factory=dict) """Additional metadata""" @dataclass class DocStatusStorage(BaseKVStorage, ABC): """Base class for document status storage""" @abstractmethod async def get_status_counts(self) -> dict[str, int]: """Get counts of documents in each status""" @abstractmethod async def get_docs_by_status( self, status: DocStatus ) -> dict[str, DocProcessingStatus]: """Get all documents with a specific status""" async def drop_cache_by_modes(self, modes: list[str] | None = None) -> bool: """Drop cache is not supported for Doc Status storage""" return False class StoragesStatus(str, Enum): """Storages status""" NOT_CREATED = "not_created" CREATED = "created" INITIALIZED = "initialized" FINALIZED = "finalized" @dataclass class DeletionResult: """Represents the result of a deletion operation.""" status: Literal["success", "not_found", "fail"] doc_id: str message: str status_code: int = 200 file_path: str | None = None