import os from lightrag import LightRAG from lightrag.llm import openai_complete, openai_embed from lightrag.utils import EmbeddingFunc from lightrag import QueryParam # WorkingDir ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) WORKING_DIR = os.path.join(ROOT_DIR, "dickens") if not os.path.exists(WORKING_DIR): os.mkdir(WORKING_DIR) print(f"WorkingDir: {WORKING_DIR}") api_key = "empty" rag = LightRAG( working_dir=WORKING_DIR, llm_model_func=openai_complete, llm_model_name="qwen2.5-14b-instruct@4bit", llm_model_max_async=4, llm_model_max_token_size=32768, llm_model_kwargs={"base_url": "http://127.0.0.1:1234/v1", "api_key": api_key}, embedding_func=EmbeddingFunc( embedding_dim=1024, max_token_size=8192, func=lambda texts: openai_embed( texts=texts, model="text-embedding-bge-m3", base_url="http://127.0.0.1:1234/v1", api_key=api_key, ), ), ) with open("./book.txt", "r", encoding="utf-8") as f: rag.insert(f.read()) resp = rag.query( "What are the top themes in this story?", param=QueryParam(mode="hybrid", stream=True), ) async def print_stream(stream): async for chunk in stream: if chunk: print(chunk, end="", flush=True)