import os import sys from lightrag import LightRAG, QueryParam from lightrag.llm import hf_model_complete, hf_embedding from lightrag.utils import EmbeddingFunc from transformers import AutoModel,AutoTokenizer WORKING_DIR = "./dickens" if not os.path.exists(WORKING_DIR): os.mkdir(WORKING_DIR) rag = LightRAG( working_dir=WORKING_DIR, llm_model_func=hf_model_complete, llm_model_name='meta-llama/Llama-3.1-8B-Instruct', embedding_func=EmbeddingFunc( tokenizer=AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2"), embed_model=AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2"), embedding_dim=384, max_token_size=5000, func=hf_embedding ), ) with open("./book.txt") as f: rag.insert(f.read()) # Perform naive search print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))) # Perform local search print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))) # Perform global search print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))) # Perform hybrid search print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))