from fastapi import FastAPI, HTTPException from pydantic import BaseModel import os from lightrag import LightRAG, QueryParam from lightrag.llm import openai_complete_if_cache, openai_embedding from lightrag.utils import EmbeddingFunc import numpy as np from typing import Optional import asyncio import nest_asyncio # Apply nest_asyncio to solve event loop issues nest_asyncio.apply() DEFAULT_RAG_DIR="index_default" app = FastAPI(title="LightRAG API", description="API for RAG operations") # Configure working directory WORKING_DIR = os.environ.get('RAG_DIR', f'{DEFAULT_RAG_DIR}') print(f"WORKING_DIR: {WORKING_DIR}") if not os.path.exists(WORKING_DIR): os.mkdir(WORKING_DIR) # LLM model function async def llm_model_func( prompt, system_prompt=None, history_messages=[], **kwargs ) -> str: return await openai_complete_if_cache( "gpt-4o-mini", prompt, system_prompt=system_prompt, history_messages=history_messages, api_key='YOUR_API_KEY', base_url="YourURL/v1", **kwargs, ) # Embedding function async def embedding_func(texts: list[str]) -> np.ndarray: return await openai_embedding( texts, model="text-embedding-3-large", api_key='YOUR_API_KEY', base_url="YourURL/v1", ) # Initialize RAG instance rag = LightRAG( working_dir=WORKING_DIR, llm_model_func=llm_model_func, embedding_func=EmbeddingFunc( embedding_dim=3072, max_token_size=8192, func=embedding_func ), ) # Data models class QueryRequest(BaseModel): query: str mode: str = "hybrid" class InsertRequest(BaseModel): text: str class InsertFileRequest(BaseModel): file_path: str class Response(BaseModel): status: str data: Optional[str] = None message: Optional[str] = None # API routes @app.post("/query", response_model=Response) async def query_endpoint(request: QueryRequest): try: loop = asyncio.get_event_loop() result = await loop.run_in_executor( None, lambda: rag.query(request.query, param=QueryParam(mode=request.mode)) ) return Response( status="success", data=result ) except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.post("/insert", response_model=Response) async def insert_endpoint(request: InsertRequest): try: loop = asyncio.get_event_loop() await loop.run_in_executor(None, lambda: rag.insert(request.text)) return Response( status="success", message="Text inserted successfully" ) except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.post("/insert_file", response_model=Response) async def insert_file(request: InsertFileRequest): try: # Check if file exists if not os.path.exists(request.file_path): raise HTTPException( status_code=404, detail=f"File not found: {request.file_path}" ) # Read file content try: with open(request.file_path, 'r', encoding='utf-8') as f: content = f.read() except UnicodeDecodeError: # If UTF-8 decoding fails, try other encodings with open(request.file_path, 'r', encoding='gbk') as f: content = f.read() # Insert file content loop = asyncio.get_event_loop() await loop.run_in_executor(None, lambda: rag.insert(content)) return Response( status="success", message=f"File content from {request.file_path} inserted successfully" ) except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.get("/health") async def health_check(): return {"status": "healthy"} if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=8020) # Usage example # To run the server, use the following command in your terminal: # python lightrag_api_openai_compatible_demo.py # Example requests: # 1. Query: # curl -X POST "http://127.0.0.1:8020/query" -H "Content-Type: application/json" -d '{"query": "your query here", "mode": "hybrid"}' # 2. Insert text: # curl -X POST "http://127.0.0.1:8020/insert" -H "Content-Type: application/json" -d '{"text": "your text here"}' # 3. Insert file: # curl -X POST "http://127.0.0.1:8020/insert_file" -H "Content-Type: application/json" -d '{"file_path": "path/to/your/file.txt"}' # 4. Health check: # curl -X GET "http://127.0.0.1:8020/health"