import asyncio import inspect import logging import os import time from dotenv import load_dotenv from lightrag import LightRAG, QueryParam from lightrag.kg.postgres_impl import PostgreSQLDB from lightrag.llm import ollama_embedding, zhipu_complete from lightrag.utils import EmbeddingFunc load_dotenv() ROOT_DIR = os.environ.get("ROOT_DIR") WORKING_DIR = f"{ROOT_DIR}/dickens-pg" logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.INFO) if not os.path.exists(WORKING_DIR): os.mkdir(WORKING_DIR) # AGE os.environ["AGE_GRAPH_NAME"] = "dickens" postgres_db = PostgreSQLDB( config={ "host": "localhost", "port": 15432, "user": "rag", "password": "rag", "database": "rag", } ) async def main(): await postgres_db.initdb() # Check if PostgreSQL DB tables exist, if not, tables will be created await postgres_db.check_tables() rag = LightRAG( working_dir=WORKING_DIR, llm_model_func=zhipu_complete, llm_model_name="glm-4-flashx", llm_model_max_async=4, llm_model_max_token_size=32768, embedding_func=EmbeddingFunc( embedding_dim=768, max_token_size=8192, func=lambda texts: ollama_embedding( texts, embed_model="nomic-embed-text", host="http://localhost:11434" ), ), kv_storage="PGKVStorage", doc_status_storage="PGDocStatusStorage", graph_storage="PGGraphStorage", vector_storage="PGVectorStorage" ) # Set the KV/vector/graph storage's `db` property, so all operation will use same connection pool rag.doc_status.db = postgres_db rag.full_docs.db = postgres_db rag.text_chunks.db = postgres_db rag.llm_response_cache.db = postgres_db rag.key_string_value_json_storage_cls.db = postgres_db rag.chunks_vdb.db = postgres_db rag.relationships_vdb.db = postgres_db rag.entities_vdb.db = postgres_db rag.graph_storage_cls.db = postgres_db rag.chunk_entity_relation_graph.db = postgres_db # add embedding_func for graph database, it's deleted in commit 5661d76860436f7bf5aef2e50d9ee4a59660146c rag.chunk_entity_relation_graph.embedding_func = rag.embedding_func with open(f"{ROOT_DIR}/book.txt", "r", encoding="utf-8") as f: await rag.ainsert(f.read()) print("==== Trying to test the rag queries ====") print("**** Start Naive Query ****") start_time = time.time() # Perform naive search print( await rag.aquery("What are the top themes in this story?", param=QueryParam(mode="naive")) ) print(f"Naive Query Time: {time.time() - start_time} seconds") # Perform local search print("**** Start Local Query ****") start_time = time.time() print( await rag.aquery("What are the top themes in this story?", param=QueryParam(mode="local")) ) print(f"Local Query Time: {time.time() - start_time} seconds") # Perform global search print("**** Start Global Query ****") start_time = time.time() print( await rag.aquery("What are the top themes in this story?", param=QueryParam(mode="global")) ) print(f"Global Query Time: {time.time() - start_time}") # Perform hybrid search print("**** Start Hybrid Query ****") print( await rag.aquery("What are the top themes in this story?", param=QueryParam(mode="hybrid")) ) print(f"Hybrid Query Time: {time.time() - start_time} seconds") if __name__ == "__main__": asyncio.run(main()) async def print_stream(stream): async for chunk in stream: print(chunk, end="", flush=True)