import os import asyncio from lightrag import LightRAG, QueryParam from lightrag.llm.openai import gpt_4o_mini_complete, gpt_4o_complete, openai_embed from lightrag.kg.shared_storage import initialize_pipeline_status WORKING_DIR = "./lightrag_demo" if not os.path.exists(WORKING_DIR): os.mkdir(WORKING_DIR) async def initialize_rag(): rag = LightRAG( working_dir=WORKING_DIR, embedding_func=openai_embed, llm_model_func=gpt_4o_mini_complete, # Default model for queries ) await rag.initialize_storages() await initialize_pipeline_status() return rag def main(): # Initialize RAG instance rag = asyncio.run(initialize_rag()) # Load the data with open("./book.txt", "r", encoding="utf-8") as f: rag.insert(f.read()) # Query with naive mode (default model) print("--- NAIVE mode ---") print( rag.query( "What are the main themes in this story?", param=QueryParam(mode="naive") ) ) # Query with local mode (default model) print("\n--- LOCAL mode ---") print( rag.query( "What are the main themes in this story?", param=QueryParam(mode="local") ) ) # Query with global mode (default model) print("\n--- GLOBAL mode ---") print( rag.query( "What are the main themes in this story?", param=QueryParam(mode="global") ) ) # Query with hybrid mode (default model) print("\n--- HYBRID mode ---") print( rag.query( "What are the main themes in this story?", param=QueryParam(mode="hybrid") ) ) # Query with mix mode (default model) print("\n--- MIX mode ---") print( rag.query( "What are the main themes in this story?", param=QueryParam(mode="mix") ) ) # Query with a custom model (gpt-4o) for a more complex question print("\n--- Using custom model for complex analysis ---") print( rag.query( "How does the character development reflect Victorian-era attitudes?", param=QueryParam( mode="global", model_func=gpt_4o_complete # Override default model with more capable one ) ) ) if __name__ == "__main__": main()