import os from dataclasses import dataclass from typing import Any, final import numpy as np from lightrag.types import KnowledgeGraph, KnowledgeGraphNode, KnowledgeGraphEdge from lightrag.utils import logger from lightrag.base import BaseGraphStorage import pipmaster as pm if not pm.is_installed("networkx"): pm.install("networkx") if not pm.is_installed("graspologic"): pm.install("graspologic") import networkx as nx from graspologic import embed from .shared_storage import ( get_storage_lock, get_update_flag, set_all_update_flags, is_multiprocess, ) MAX_GRAPH_NODES = int(os.getenv("MAX_GRAPH_NODES", 1000)) @final @dataclass class NetworkXStorage(BaseGraphStorage): @staticmethod def load_nx_graph(file_name) -> nx.Graph: if os.path.exists(file_name): return nx.read_graphml(file_name) return None @staticmethod def write_nx_graph(graph: nx.Graph, file_name): logger.info( f"Writing graph with {graph.number_of_nodes()} nodes, {graph.number_of_edges()} edges" ) nx.write_graphml(graph, file_name) @staticmethod def _stabilize_graph(graph: nx.Graph) -> nx.Graph: """Refer to https://github.com/microsoft/graphrag/index/graph/utils/stable_lcc.py Ensure an undirected graph with the same relationships will always be read the same way. """ fixed_graph = nx.DiGraph() if graph.is_directed() else nx.Graph() sorted_nodes = graph.nodes(data=True) sorted_nodes = sorted(sorted_nodes, key=lambda x: x[0]) fixed_graph.add_nodes_from(sorted_nodes) edges = list(graph.edges(data=True)) if not graph.is_directed(): def _sort_source_target(edge): source, target, edge_data = edge if source > target: temp = source source = target target = temp return source, target, edge_data edges = [_sort_source_target(edge) for edge in edges] def _get_edge_key(source: Any, target: Any) -> str: return f"{source} -> {target}" edges = sorted(edges, key=lambda x: _get_edge_key(x[0], x[1])) fixed_graph.add_edges_from(edges) return fixed_graph def __post_init__(self): self._graphml_xml_file = os.path.join( self.global_config["working_dir"], f"graph_{self.namespace}.graphml" ) self._storage_lock = None self.storage_updated = None self._graph = None # Load initial graph preloaded_graph = NetworkXStorage.load_nx_graph(self._graphml_xml_file) if preloaded_graph is not None: logger.info( f"Loaded graph from {self._graphml_xml_file} with {preloaded_graph.number_of_nodes()} nodes, {preloaded_graph.number_of_edges()} edges" ) else: logger.info("Created new empty graph") self._graph = preloaded_graph or nx.Graph() self._node_embed_algorithms = { "node2vec": self._node2vec_embed, } async def initialize(self): """Initialize storage data""" # Get the update flag for cross-process update notification self.storage_updated = await get_update_flag(self.namespace) # Get the storage lock for use in other methods self._storage_lock = get_storage_lock() async def _get_graph(self): """Check if the storage should be reloaded""" # Acquire lock to prevent concurrent read and write async with self._storage_lock: # Check if data needs to be reloaded if (is_multiprocess and self.storage_updated.value) or ( not is_multiprocess and self.storage_updated ): logger.info( f"Process {os.getpid()} reloading graph {self.namespace} due to update by another process" ) # Reload data self._graph = ( NetworkXStorage.load_nx_graph(self._graphml_xml_file) or nx.Graph() ) # Reset update flag if is_multiprocess: self.storage_updated.value = False else: self.storage_updated = False return self._graph async def has_node(self, node_id: str) -> bool: graph = await self._get_graph() return graph.has_node(node_id) async def has_edge(self, source_node_id: str, target_node_id: str) -> bool: graph = await self._get_graph() return graph.has_edge(source_node_id, target_node_id) async def get_node(self, node_id: str) -> dict[str, str] | None: graph = await self._get_graph() return graph.nodes.get(node_id) async def node_degree(self, node_id: str) -> int: graph = await self._get_graph() return graph.degree(node_id) async def edge_degree(self, src_id: str, tgt_id: str) -> int: graph = await self._get_graph() return graph.degree(src_id) + graph.degree(tgt_id) async def get_edge( self, source_node_id: str, target_node_id: str ) -> dict[str, str] | None: graph = await self._get_graph() return graph.edges.get((source_node_id, target_node_id)) async def get_node_edges(self, source_node_id: str) -> list[tuple[str, str]] | None: graph = await self._get_graph() if graph.has_node(source_node_id): return list(graph.edges(source_node_id)) return None async def upsert_node(self, node_id: str, node_data: dict[str, str]) -> None: graph = await self._get_graph() graph.add_node(node_id, **node_data) async def upsert_edge( self, source_node_id: str, target_node_id: str, edge_data: dict[str, str] ) -> None: graph = await self._get_graph() graph.add_edge(source_node_id, target_node_id, **edge_data) async def delete_node(self, node_id: str) -> None: graph = await self._get_graph() if graph.has_node(node_id): graph.remove_node(node_id) logger.debug(f"Node {node_id} deleted from the graph.") else: logger.warning(f"Node {node_id} not found in the graph for deletion.") async def embed_nodes( self, algorithm: str ) -> tuple[np.ndarray[Any, Any], list[str]]: if algorithm not in self._node_embed_algorithms: raise ValueError(f"Node embedding algorithm {algorithm} not supported") return await self._node_embed_algorithms[algorithm]() # TODO: NOT USED async def _node2vec_embed(self): graph = await self._get_graph() embeddings, nodes = embed.node2vec_embed( graph, **self.global_config["node2vec_params"], ) nodes_ids = [graph.nodes[node_id]["id"] for node_id in nodes] return embeddings, nodes_ids async def remove_nodes(self, nodes: list[str]): """Delete multiple nodes Args: nodes: List of node IDs to be deleted """ graph = await self._get_graph() for node in nodes: if graph.has_node(node): graph.remove_node(node) async def remove_edges(self, edges: list[tuple[str, str]]): """Delete multiple edges Args: edges: List of edges to be deleted, each edge is a (source, target) tuple """ graph = await self._get_graph() for source, target in edges: if graph.has_edge(source, target): graph.remove_edge(source, target) async def get_all_labels(self) -> list[str]: """ Get all node labels in the graph Returns: [label1, label2, ...] # Alphabetically sorted label list """ graph = await self._get_graph() labels = set() for node in graph.nodes(): labels.add(str(node)) # Add node id as a label # Return sorted list return sorted(list(labels)) async def get_knowledge_graph( self, node_label: str, max_depth: int = 3, min_degree: int = 0, inclusive: bool = False, ) -> KnowledgeGraph: """ Retrieve a connected subgraph of nodes where the label includes the specified `node_label`. Maximum number of nodes is constrained by the environment variable `MAX_GRAPH_NODES` (default: 1000). When reducing the number of nodes, the prioritization criteria are as follows: 1. min_degree does not affect nodes directly connected to the matching nodes 2. Label matching nodes take precedence 3. Followed by nodes directly connected to the matching nodes 4. Finally, the degree of the nodes Args: node_label: Label of the starting node max_depth: Maximum depth of the subgraph min_degree: Minimum degree of nodes to include. Defaults to 0 inclusive: Do an inclusive search if true Returns: KnowledgeGraph object containing nodes and edges """ result = KnowledgeGraph() seen_nodes = set() seen_edges = set() graph = await self._get_graph() # Initialize sets for start nodes and direct connected nodes start_nodes = set() direct_connected_nodes = set() # Handle special case for "*" label if node_label == "*": # For "*", return the entire graph including all nodes and edges subgraph = ( graph.copy() ) # Create a copy to avoid modifying the original graph else: # Find nodes with matching node id based on search_mode nodes_to_explore = [] for n, attr in graph.nodes(data=True): node_str = str(n) if not inclusive: if node_label == node_str: # Use exact matching nodes_to_explore.append(n) else: # inclusive mode if node_label in node_str: # Use partial matching nodes_to_explore.append(n) if not nodes_to_explore: logger.warning(f"No nodes found with label {node_label}") return result # Get subgraph using ego_graph from all matching nodes combined_subgraph = nx.Graph() for start_node in nodes_to_explore: node_subgraph = nx.ego_graph(graph, start_node, radius=max_depth) combined_subgraph = nx.compose(combined_subgraph, node_subgraph) # Get start nodes and direct connected nodes if nodes_to_explore: start_nodes = set(nodes_to_explore) # Get nodes directly connected to all start nodes for start_node in start_nodes: direct_connected_nodes.update( combined_subgraph.neighbors(start_node) ) # Remove start nodes from directly connected nodes (avoid duplicates) direct_connected_nodes -= start_nodes subgraph = combined_subgraph # Filter nodes based on min_degree, but keep start nodes and direct connected nodes if min_degree > 0: nodes_to_keep = [ node for node, degree in subgraph.degree() if node in start_nodes or node in direct_connected_nodes or degree >= min_degree ] subgraph = subgraph.subgraph(nodes_to_keep) # Check if number of nodes exceeds max_graph_nodes if len(subgraph.nodes()) > MAX_GRAPH_NODES: origin_nodes = len(subgraph.nodes()) node_degrees = dict(subgraph.degree()) def priority_key(node_item): node, degree = node_item # Priority order: start(2) > directly connected(1) > other nodes(0) if node in start_nodes: priority = 2 elif node in direct_connected_nodes: priority = 1 else: priority = 0 return (priority, degree) # Sort by priority and degree and select top MAX_GRAPH_NODES nodes top_nodes = sorted(node_degrees.items(), key=priority_key, reverse=True)[ :MAX_GRAPH_NODES ] top_node_ids = [node[0] for node in top_nodes] # Create new subgraph and keep nodes only with most degree subgraph = subgraph.subgraph(top_node_ids) logger.info( f"Reduced graph from {origin_nodes} nodes to {MAX_GRAPH_NODES} nodes (depth={max_depth})" ) # Add nodes to result for node in subgraph.nodes(): if str(node) in seen_nodes: continue node_data = dict(subgraph.nodes[node]) # Get entity_type as labels labels = [] if "entity_type" in node_data: if isinstance(node_data["entity_type"], list): labels.extend(node_data["entity_type"]) else: labels.append(node_data["entity_type"]) # Create node with properties node_properties = {k: v for k, v in node_data.items()} result.nodes.append( KnowledgeGraphNode( id=str(node), labels=[str(node)], properties=node_properties ) ) seen_nodes.add(str(node)) # Add edges to result for edge in subgraph.edges(): source, target = edge edge_id = f"{source}-{target}" if edge_id in seen_edges: continue edge_data = dict(subgraph.edges[edge]) # Create edge with complete information result.edges.append( KnowledgeGraphEdge( id=edge_id, type="DIRECTED", source=str(source), target=str(target), properties=edge_data, ) ) seen_edges.add(edge_id) logger.info( f"Subgraph query successful | Node count: {len(result.nodes)} | Edge count: {len(result.edges)}" ) return result async def index_done_callback(self) -> bool: """Save data to disk""" # Check if storage was updated by another process if is_multiprocess and self.storage_updated.value: # Storage was updated by another process, reload data instead of saving logger.warning( f"Graph for {self.namespace} was updated by another process, reloading..." ) self._graph = ( NetworkXStorage.load_nx_graph(self._graphml_xml_file) or nx.Graph() ) # Reset update flag self.storage_updated.value = False return False # Return error # Acquire lock and perform persistence async with self._storage_lock: try: # Save data to disk NetworkXStorage.write_nx_graph(self._graph, self._graphml_xml_file) # Notify other processes that data has been updated await set_all_update_flags(self.namespace) # Reset own update flag to avoid self-reloading if is_multiprocess: self.storage_updated.value = False else: self.storage_updated = False return True # Return success except Exception as e: logger.error(f"Error saving graph for {self.namespace}: {e}") return False # Return error return True