from __future__ import annotations import asyncio import html import io import csv import json import logging import logging.handlers import os import re from dataclasses import dataclass from functools import wraps from hashlib import md5 from typing import Any, Callable import xml.etree.ElementTree as ET import numpy as np import tiktoken from lightrag.prompt import PROMPTS from dotenv import load_dotenv # Load environment variables load_dotenv(override=True) VERBOSE_DEBUG = os.getenv("VERBOSE", "false").lower() == "true" def verbose_debug(msg: str, *args, **kwargs): """Function for outputting detailed debug information. When VERBOSE_DEBUG=True, outputs the complete message. When VERBOSE_DEBUG=False, outputs only the first 50 characters. Args: msg: The message format string *args: Arguments to be formatted into the message **kwargs: Keyword arguments passed to logger.debug() """ if VERBOSE_DEBUG: logger.debug(msg, *args, **kwargs) else: # Format the message with args first if args: formatted_msg = msg % args else: formatted_msg = msg # Then truncate the formatted message truncated_msg = ( formatted_msg[:100] + "..." if len(formatted_msg) > 100 else formatted_msg ) logger.debug(truncated_msg, **kwargs) def set_verbose_debug(enabled: bool): """Enable or disable verbose debug output""" global VERBOSE_DEBUG VERBOSE_DEBUG = enabled statistic_data = {"llm_call": 0, "llm_cache": 0, "embed_call": 0} # Initialize logger logger = logging.getLogger("lightrag") logger.propagate = False # prevent log message send to root loggger # Let the main application configure the handlers logger.setLevel(logging.INFO) # Set httpx logging level to WARNING logging.getLogger("httpx").setLevel(logging.WARNING) class LightragPathFilter(logging.Filter): """Filter for lightrag logger to filter out frequent path access logs""" def __init__(self): super().__init__() # Define paths to be filtered self.filtered_paths = [ "/documents", "/health", "/webui/", "/documents/pipeline_status", ] # self.filtered_paths = ["/health", "/webui/"] def filter(self, record): try: # Check if record has the required attributes for an access log if not hasattr(record, "args") or not isinstance(record.args, tuple): return True if len(record.args) < 5: return True # Extract method, path and status from the record args method = record.args[1] path = record.args[2] status = record.args[4] # Filter out successful GET requests to filtered paths if ( method == "GET" and (status == 200 or status == 304) and path in self.filtered_paths ): return False return True except Exception: # In case of any error, let the message through return True def setup_logger( logger_name: str, level: str = "INFO", add_filter: bool = False, log_file_path: str | None = None, enable_file_logging: bool = True, ): """Set up a logger with console and optionally file handlers Args: logger_name: Name of the logger to set up level: Log level (DEBUG, INFO, WARNING, ERROR, CRITICAL) add_filter: Whether to add LightragPathFilter to the logger log_file_path: Path to the log file. If None and file logging is enabled, defaults to lightrag.log in LOG_DIR or cwd enable_file_logging: Whether to enable logging to a file (defaults to True) """ # Configure formatters detailed_formatter = logging.Formatter( "%(asctime)s - %(name)s - %(levelname)s - %(message)s" ) simple_formatter = logging.Formatter("%(levelname)s: %(message)s") logger_instance = logging.getLogger(logger_name) logger_instance.setLevel(level) logger_instance.handlers = [] # Clear existing handlers logger_instance.propagate = False # Add console handler console_handler = logging.StreamHandler() console_handler.setFormatter(simple_formatter) console_handler.setLevel(level) logger_instance.addHandler(console_handler) # Add file handler by default unless explicitly disabled if enable_file_logging: # Get log file path if log_file_path is None: log_dir = os.getenv("LOG_DIR", os.getcwd()) log_file_path = os.path.abspath(os.path.join(log_dir, "lightrag.log")) # Ensure log directory exists os.makedirs(os.path.dirname(log_file_path), exist_ok=True) # Get log file max size and backup count from environment variables log_max_bytes = int(os.getenv("LOG_MAX_BYTES", 10485760)) # Default 10MB log_backup_count = int(os.getenv("LOG_BACKUP_COUNT", 5)) # Default 5 backups try: # Add file handler file_handler = logging.handlers.RotatingFileHandler( filename=log_file_path, maxBytes=log_max_bytes, backupCount=log_backup_count, encoding="utf-8", ) file_handler.setFormatter(detailed_formatter) file_handler.setLevel(level) logger_instance.addHandler(file_handler) except PermissionError as e: logger.warning(f"Could not create log file at {log_file_path}: {str(e)}") logger.warning("Continuing with console logging only") # Add path filter if requested if add_filter: path_filter = LightragPathFilter() logger_instance.addFilter(path_filter) class UnlimitedSemaphore: """A context manager that allows unlimited access.""" async def __aenter__(self): pass async def __aexit__(self, exc_type, exc, tb): pass ENCODER = None @dataclass class EmbeddingFunc: embedding_dim: int max_token_size: int func: callable # concurrent_limit: int = 16 async def __call__(self, *args, **kwargs) -> np.ndarray: return await self.func(*args, **kwargs) def locate_json_string_body_from_string(content: str) -> str | None: """Locate the JSON string body from a string""" try: maybe_json_str = re.search(r"{.*}", content, re.DOTALL) if maybe_json_str is not None: maybe_json_str = maybe_json_str.group(0) maybe_json_str = maybe_json_str.replace("\\n", "") maybe_json_str = maybe_json_str.replace("\n", "") maybe_json_str = maybe_json_str.replace("'", '"') # json.loads(maybe_json_str) # don't check here, cannot validate schema after all return maybe_json_str except Exception: pass # try: # content = ( # content.replace(kw_prompt[:-1], "") # .replace("user", "") # .replace("model", "") # .strip() # ) # maybe_json_str = "{" + content.split("{")[1].split("}")[0] + "}" # json.loads(maybe_json_str) return None def convert_response_to_json(response: str) -> dict[str, Any]: json_str = locate_json_string_body_from_string(response) assert json_str is not None, f"Unable to parse JSON from response: {response}" try: data = json.loads(json_str) return data except json.JSONDecodeError as e: logger.error(f"Failed to parse JSON: {json_str}") raise e from None def compute_args_hash(*args: Any, cache_type: str | None = None) -> str: """Compute a hash for the given arguments. Args: *args: Arguments to hash cache_type: Type of cache (e.g., 'keywords', 'query', 'extract') Returns: str: Hash string """ import hashlib # Convert all arguments to strings and join them args_str = "".join([str(arg) for arg in args]) if cache_type: args_str = f"{cache_type}:{args_str}" # Compute MD5 hash return hashlib.md5(args_str.encode()).hexdigest() def compute_mdhash_id(content: str, prefix: str = "") -> str: """ Compute a unique ID for a given content string. The ID is a combination of the given prefix and the MD5 hash of the content string. """ return prefix + md5(content.encode()).hexdigest() def limit_async_func_call(max_size: int): """Add restriction of maximum concurrent async calls using asyncio.Semaphore""" def final_decro(func): sem = asyncio.Semaphore(max_size) @wraps(func) async def wait_func(*args, **kwargs): async with sem: result = await func(*args, **kwargs) return result return wait_func return final_decro def wrap_embedding_func_with_attrs(**kwargs): """Wrap a function with attributes""" def final_decro(func) -> EmbeddingFunc: new_func = EmbeddingFunc(**kwargs, func=func) return new_func return final_decro def load_json(file_name): if not os.path.exists(file_name): return None with open(file_name, encoding="utf-8") as f: return json.load(f) def write_json(json_obj, file_name): with open(file_name, "w", encoding="utf-8") as f: json.dump(json_obj, f, indent=2, ensure_ascii=False) def encode_string_by_tiktoken(content: str, model_name: str = "gpt-4o"): global ENCODER if ENCODER is None: ENCODER = tiktoken.encoding_for_model(model_name) tokens = ENCODER.encode(content) return tokens def decode_tokens_by_tiktoken(tokens: list[int], model_name: str = "gpt-4o"): global ENCODER if ENCODER is None: ENCODER = tiktoken.encoding_for_model(model_name) content = ENCODER.decode(tokens) return content def pack_user_ass_to_openai_messages(*args: str): roles = ["user", "assistant"] return [ {"role": roles[i % 2], "content": content} for i, content in enumerate(args) ] def split_string_by_multi_markers(content: str, markers: list[str]) -> list[str]: """Split a string by multiple markers""" if not markers: return [content] results = re.split("|".join(re.escape(marker) for marker in markers), content) return [r.strip() for r in results if r.strip()] # Refer the utils functions of the official GraphRAG implementation: # https://github.com/microsoft/graphrag def clean_str(input: Any) -> str: """Clean an input string by removing HTML escapes, control characters, and other unwanted characters.""" # If we get non-string input, just give it back if not isinstance(input, str): return input result = html.unescape(input.strip()) # https://stackoverflow.com/questions/4324790/removing-control-characters-from-a-string-in-python return re.sub(r"[\x00-\x1f\x7f-\x9f]", "", result) def is_float_regex(value: str) -> bool: return bool(re.match(r"^[-+]?[0-9]*\.?[0-9]+$", value)) def truncate_list_by_token_size( list_data: list[Any], key: Callable[[Any], str], max_token_size: int ) -> list[int]: """Truncate a list of data by token size""" if max_token_size <= 0: return [] tokens = 0 for i, data in enumerate(list_data): tokens += len(encode_string_by_tiktoken(key(data))) if tokens > max_token_size: return list_data[:i] return list_data def list_of_list_to_csv(data: list[list[str]]) -> str: output = io.StringIO() writer = csv.writer( output, quoting=csv.QUOTE_ALL, # Quote all fields escapechar="\\", # Use backslash as escape character quotechar='"', # Use double quotes lineterminator="\n", # Explicit line terminator ) writer.writerows(data) return output.getvalue() def csv_string_to_list(csv_string: str) -> list[list[str]]: # Clean the string by removing NUL characters cleaned_string = csv_string.replace("\0", "") output = io.StringIO(cleaned_string) reader = csv.reader( output, quoting=csv.QUOTE_ALL, # Match the writer configuration escapechar="\\", # Use backslash as escape character quotechar='"', # Use double quotes ) try: return [row for row in reader] except csv.Error as e: raise ValueError(f"Failed to parse CSV string: {str(e)}") finally: output.close() def save_data_to_file(data, file_name): with open(file_name, "w", encoding="utf-8") as f: json.dump(data, f, ensure_ascii=False, indent=4) def xml_to_json(xml_file): try: tree = ET.parse(xml_file) root = tree.getroot() # Print the root element's tag and attributes to confirm the file has been correctly loaded print(f"Root element: {root.tag}") print(f"Root attributes: {root.attrib}") data = {"nodes": [], "edges": []} # Use namespace namespace = {"": "http://graphml.graphdrawing.org/xmlns"} for node in root.findall(".//node", namespace): node_data = { "id": node.get("id").strip('"'), "entity_type": node.find("./data[@key='d0']", namespace).text.strip('"') if node.find("./data[@key='d0']", namespace) is not None else "", "description": node.find("./data[@key='d1']", namespace).text if node.find("./data[@key='d1']", namespace) is not None else "", "source_id": node.find("./data[@key='d2']", namespace).text if node.find("./data[@key='d2']", namespace) is not None else "", } data["nodes"].append(node_data) for edge in root.findall(".//edge", namespace): edge_data = { "source": edge.get("source").strip('"'), "target": edge.get("target").strip('"'), "weight": float(edge.find("./data[@key='d3']", namespace).text) if edge.find("./data[@key='d3']", namespace) is not None else 0.0, "description": edge.find("./data[@key='d4']", namespace).text if edge.find("./data[@key='d4']", namespace) is not None else "", "keywords": edge.find("./data[@key='d5']", namespace).text if edge.find("./data[@key='d5']", namespace) is not None else "", "source_id": edge.find("./data[@key='d6']", namespace).text if edge.find("./data[@key='d6']", namespace) is not None else "", } data["edges"].append(edge_data) # Print the number of nodes and edges found print(f"Found {len(data['nodes'])} nodes and {len(data['edges'])} edges") return data except ET.ParseError as e: print(f"Error parsing XML file: {e}") return None except Exception as e: print(f"An error occurred: {e}") return None def process_combine_contexts(hl: str, ll: str): header = None list_hl = csv_string_to_list(hl.strip()) list_ll = csv_string_to_list(ll.strip()) if list_hl: header = list_hl[0] list_hl = list_hl[1:] if list_ll: header = list_ll[0] list_ll = list_ll[1:] if header is None: return "" if list_hl: list_hl = [",".join(item[1:]) for item in list_hl if item] if list_ll: list_ll = [",".join(item[1:]) for item in list_ll if item] combined_sources = [] seen = set() for item in list_hl + list_ll: if item and item not in seen: combined_sources.append(item) seen.add(item) combined_sources_result = [",\t".join(header)] for i, item in enumerate(combined_sources, start=1): combined_sources_result.append(f"{i},\t{item}") combined_sources_result = "\n".join(combined_sources_result) return combined_sources_result async def get_best_cached_response( hashing_kv, current_embedding, similarity_threshold=0.95, mode="default", use_llm_check=False, llm_func=None, original_prompt=None, cache_type=None, ) -> str | None: logger.debug( f"get_best_cached_response: mode={mode} cache_type={cache_type} use_llm_check={use_llm_check}" ) mode_cache = await hashing_kv.get_by_id(mode) if not mode_cache: return None best_similarity = -1 best_response = None best_prompt = None best_cache_id = None # Only iterate through cache entries for this mode for cache_id, cache_data in mode_cache.items(): # Skip if cache_type doesn't match if cache_type and cache_data.get("cache_type") != cache_type: continue if cache_data["embedding"] is None: continue # Convert cached embedding list to ndarray cached_quantized = np.frombuffer( bytes.fromhex(cache_data["embedding"]), dtype=np.uint8 ).reshape(cache_data["embedding_shape"]) cached_embedding = dequantize_embedding( cached_quantized, cache_data["embedding_min"], cache_data["embedding_max"], ) similarity = cosine_similarity(current_embedding, cached_embedding) if similarity > best_similarity: best_similarity = similarity best_response = cache_data["return"] best_prompt = cache_data["original_prompt"] best_cache_id = cache_id if best_similarity > similarity_threshold: # If LLM check is enabled and all required parameters are provided if ( use_llm_check and llm_func and original_prompt and best_prompt and best_response is not None ): compare_prompt = PROMPTS["similarity_check"].format( original_prompt=original_prompt, cached_prompt=best_prompt ) try: llm_result = await llm_func(compare_prompt) llm_result = llm_result.strip() llm_similarity = float(llm_result) # Replace vector similarity with LLM similarity score best_similarity = llm_similarity if best_similarity < similarity_threshold: log_data = { "event": "cache_rejected_by_llm", "type": cache_type, "mode": mode, "original_question": original_prompt[:100] + "..." if len(original_prompt) > 100 else original_prompt, "cached_question": best_prompt[:100] + "..." if len(best_prompt) > 100 else best_prompt, "similarity_score": round(best_similarity, 4), "threshold": similarity_threshold, } logger.debug(json.dumps(log_data, ensure_ascii=False)) logger.info(f"Cache rejected by LLM(mode:{mode} tpye:{cache_type})") return None except Exception as e: # Catch all possible exceptions logger.warning(f"LLM similarity check failed: {e}") return None # Return None directly when LLM check fails prompt_display = ( best_prompt[:50] + "..." if len(best_prompt) > 50 else best_prompt ) log_data = { "event": "cache_hit", "type": cache_type, "mode": mode, "similarity": round(best_similarity, 4), "cache_id": best_cache_id, "original_prompt": prompt_display, } logger.debug(json.dumps(log_data, ensure_ascii=False)) return best_response return None def cosine_similarity(v1, v2): """Calculate cosine similarity between two vectors""" dot_product = np.dot(v1, v2) norm1 = np.linalg.norm(v1) norm2 = np.linalg.norm(v2) return dot_product / (norm1 * norm2) def quantize_embedding(embedding: np.ndarray | list[float], bits: int = 8) -> tuple: """Quantize embedding to specified bits""" # Convert list to numpy array if needed if isinstance(embedding, list): embedding = np.array(embedding) # Calculate min/max values for reconstruction min_val = embedding.min() max_val = embedding.max() # Quantize to 0-255 range scale = (2**bits - 1) / (max_val - min_val) quantized = np.round((embedding - min_val) * scale).astype(np.uint8) return quantized, min_val, max_val def dequantize_embedding( quantized: np.ndarray, min_val: float, max_val: float, bits=8 ) -> np.ndarray: """Restore quantized embedding""" scale = (max_val - min_val) / (2**bits - 1) return (quantized * scale + min_val).astype(np.float32) async def handle_cache( hashing_kv, args_hash, prompt, mode="default", cache_type=None, ): """Generic cache handling function""" if hashing_kv is None: return None, None, None, None if mode != "default": # handle cache for all type of query if not hashing_kv.global_config.get("enable_llm_cache"): return None, None, None, None # Get embedding cache configuration embedding_cache_config = hashing_kv.global_config.get( "embedding_cache_config", {"enabled": False, "similarity_threshold": 0.95, "use_llm_check": False}, ) is_embedding_cache_enabled = embedding_cache_config["enabled"] use_llm_check = embedding_cache_config.get("use_llm_check", False) quantized = min_val = max_val = None if is_embedding_cache_enabled: # Use embedding simularity to match cache current_embedding = await hashing_kv.embedding_func([prompt]) llm_model_func = hashing_kv.global_config.get("llm_model_func") quantized, min_val, max_val = quantize_embedding(current_embedding[0]) best_cached_response = await get_best_cached_response( hashing_kv, current_embedding[0], similarity_threshold=embedding_cache_config["similarity_threshold"], mode=mode, use_llm_check=use_llm_check, llm_func=llm_model_func if use_llm_check else None, original_prompt=prompt, cache_type=cache_type, ) if best_cached_response is not None: logger.debug(f"Embedding cached hit(mode:{mode} type:{cache_type})") return best_cached_response, None, None, None else: # if caching keyword embedding is enabled, return the quantized embedding for saving it latter logger.debug(f"Embedding cached missed(mode:{mode} type:{cache_type})") return None, quantized, min_val, max_val else: # handle cache for entity extraction if not hashing_kv.global_config.get("enable_llm_cache_for_entity_extract"): return None, None, None, None # Here is the conditions of code reaching this point: # 1. All query mode: enable_llm_cache is True and embedding simularity is not enabled # 2. Entity extract: enable_llm_cache_for_entity_extract is True if exists_func(hashing_kv, "get_by_mode_and_id"): mode_cache = await hashing_kv.get_by_mode_and_id(mode, args_hash) or {} else: mode_cache = await hashing_kv.get_by_id(mode) or {} if args_hash in mode_cache: logger.debug(f"Non-embedding cached hit(mode:{mode} type:{cache_type})") return mode_cache[args_hash]["return"], None, None, None logger.debug(f"Non-embedding cached missed(mode:{mode} type:{cache_type})") return None, None, None, None @dataclass class CacheData: args_hash: str content: str prompt: str quantized: np.ndarray | None = None min_val: float | None = None max_val: float | None = None mode: str = "default" cache_type: str = "query" async def save_to_cache(hashing_kv, cache_data: CacheData): """Save data to cache, with improved handling for streaming responses and duplicate content. Args: hashing_kv: The key-value storage for caching cache_data: The cache data to save """ # Skip if storage is None or content is a streaming response if hashing_kv is None or not cache_data.content: return # If content is a streaming response, don't cache it if hasattr(cache_data.content, "__aiter__"): logger.debug("Streaming response detected, skipping cache") return # Get existing cache data if exists_func(hashing_kv, "get_by_mode_and_id"): mode_cache = ( await hashing_kv.get_by_mode_and_id(cache_data.mode, cache_data.args_hash) or {} ) else: mode_cache = await hashing_kv.get_by_id(cache_data.mode) or {} # Check if we already have identical content cached if cache_data.args_hash in mode_cache: existing_content = mode_cache[cache_data.args_hash].get("return") if existing_content == cache_data.content: logger.info( f"Cache content unchanged for {cache_data.args_hash}, skipping update" ) return # Update cache with new content mode_cache[cache_data.args_hash] = { "return": cache_data.content, "cache_type": cache_data.cache_type, "embedding": cache_data.quantized.tobytes().hex() if cache_data.quantized is not None else None, "embedding_shape": cache_data.quantized.shape if cache_data.quantized is not None else None, "embedding_min": cache_data.min_val, "embedding_max": cache_data.max_val, "original_prompt": cache_data.prompt, } # Only upsert if there's actual new content await hashing_kv.upsert({cache_data.mode: mode_cache}) def safe_unicode_decode(content): # Regular expression to find all Unicode escape sequences of the form \uXXXX unicode_escape_pattern = re.compile(r"\\u([0-9a-fA-F]{4})") # Function to replace the Unicode escape with the actual character def replace_unicode_escape(match): # Convert the matched hexadecimal value into the actual Unicode character return chr(int(match.group(1), 16)) # Perform the substitution decoded_content = unicode_escape_pattern.sub( replace_unicode_escape, content.decode("utf-8") ) return decoded_content def exists_func(obj, func_name: str) -> bool: """Check if a function exists in an object or not. :param obj: :param func_name: :return: True / False """ if callable(getattr(obj, func_name, None)): return True else: return False def get_conversation_turns( conversation_history: list[dict[str, Any]], num_turns: int ) -> str: """ Process conversation history to get the specified number of complete turns. Args: conversation_history: List of conversation messages in chronological order num_turns: Number of complete turns to include Returns: Formatted string of the conversation history """ # Check if num_turns is valid if num_turns <= 0: return "" # Group messages into turns turns: list[list[dict[str, Any]]] = [] messages: list[dict[str, Any]] = [] # First, filter out keyword extraction messages for msg in conversation_history: if msg["role"] == "assistant" and ( msg["content"].startswith('{ "high_level_keywords"') or msg["content"].startswith("{'high_level_keywords'") ): continue messages.append(msg) # Then process messages in chronological order i = 0 while i < len(messages) - 1: msg1 = messages[i] msg2 = messages[i + 1] # Check if we have a user-assistant or assistant-user pair if (msg1["role"] == "user" and msg2["role"] == "assistant") or ( msg1["role"] == "assistant" and msg2["role"] == "user" ): # Always put user message first in the turn if msg1["role"] == "assistant": turn = [msg2, msg1] # user, assistant else: turn = [msg1, msg2] # user, assistant turns.append(turn) i += 2 # Keep only the most recent num_turns if len(turns) > num_turns: turns = turns[-num_turns:] # Format the turns into a string formatted_turns: list[str] = [] for turn in turns: formatted_turns.extend( [f"user: {turn[0]['content']}", f"assistant: {turn[1]['content']}"] ) return "\n".join(formatted_turns) def always_get_an_event_loop() -> asyncio.AbstractEventLoop: """ Ensure that there is always an event loop available. This function tries to get the current event loop. If the current event loop is closed or does not exist, it creates a new event loop and sets it as the current event loop. Returns: asyncio.AbstractEventLoop: The current or newly created event loop. """ try: # Try to get the current event loop current_loop = asyncio.get_event_loop() if current_loop.is_closed(): raise RuntimeError("Event loop is closed.") return current_loop except RuntimeError: # If no event loop exists or it is closed, create a new one logger.info("Creating a new event loop in main thread.") new_loop = asyncio.new_event_loop() asyncio.set_event_loop(new_loop) return new_loop def lazy_external_import(module_name: str, class_name: str) -> Callable[..., Any]: """Lazily import a class from an external module based on the package of the caller.""" # Get the caller's module and package import inspect caller_frame = inspect.currentframe().f_back module = inspect.getmodule(caller_frame) package = module.__package__ if module else None def import_class(*args: Any, **kwargs: Any): import importlib module = importlib.import_module(module_name, package=package) cls = getattr(module, class_name) return cls(*args, **kwargs) return import_class def get_content_summary(content: str, max_length: int = 250) -> str: """Get summary of document content Args: content: Original document content max_length: Maximum length of summary Returns: Truncated content with ellipsis if needed """ content = content.strip() if len(content) <= max_length: return content return content[:max_length] + "..." def clean_text(text: str) -> str: """Clean text by removing null bytes (0x00) and whitespace Args: text: Input text to clean Returns: Cleaned text """ return text.strip().replace("\x00", "") def check_storage_env_vars(storage_name: str) -> None: """Check if all required environment variables for storage implementation exist Args: storage_name: Storage implementation name Raises: ValueError: If required environment variables are missing """ from lightrag.kg import STORAGE_ENV_REQUIREMENTS required_vars = STORAGE_ENV_REQUIREMENTS.get(storage_name, []) missing_vars = [var for var in required_vars if var not in os.environ] if missing_vars: raise ValueError( f"Storage implementation '{storage_name}' requires the following " f"environment variables: {', '.join(missing_vars)}" ) class TokenTracker: """Track token usage for LLM calls.""" def __init__(self): self.reset() def reset(self): self.prompt_tokens = 0 self.completion_tokens = 0 self.total_tokens = 0 self.call_count = 0 def add_usage(self, token_counts): """Add token usage from one LLM call. Args: token_counts: A dictionary containing prompt_tokens, completion_tokens, total_tokens """ self.prompt_tokens += token_counts.get("prompt_tokens", 0) self.completion_tokens += token_counts.get("completion_tokens", 0) # If total_tokens is provided, use it directly; otherwise calculate the sum if "total_tokens" in token_counts: self.total_tokens += token_counts["total_tokens"] else: self.total_tokens += token_counts.get( "prompt_tokens", 0 ) + token_counts.get("completion_tokens", 0) self.call_count += 1 def get_usage(self): """Get current usage statistics.""" return { "prompt_tokens": self.prompt_tokens, "completion_tokens": self.completion_tokens, "total_tokens": self.total_tokens, "call_count": self.call_count, } def __str__(self): usage = self.get_usage() return ( f"LLM call count: {usage['call_count']}, " f"Prompt tokens: {usage['prompt_tokens']}, " f"Completion tokens: {usage['completion_tokens']}, " f"Total tokens: {usage['total_tokens']}" )