mirror of
https://github.com/HKUDS/LightRAG.git
synced 2025-06-26 22:00:19 +00:00
190 lines
6.0 KiB
Python
190 lines
6.0 KiB
Python
import os
|
|
import asyncio
|
|
import logging
|
|
import logging.config
|
|
from lightrag import LightRAG, QueryParam
|
|
from lightrag.llm.openai import gpt_4o_mini_complete, openai_embed
|
|
from lightrag.kg.shared_storage import initialize_pipeline_status
|
|
from lightrag.utils import logger, set_verbose_debug
|
|
|
|
WORKING_DIR = "./dickens"
|
|
|
|
|
|
def configure_logging():
|
|
"""Configure logging for the application"""
|
|
|
|
# Reset any existing handlers to ensure clean configuration
|
|
for logger_name in ["uvicorn", "uvicorn.access", "uvicorn.error", "lightrag"]:
|
|
logger_instance = logging.getLogger(logger_name)
|
|
logger_instance.handlers = []
|
|
logger_instance.filters = []
|
|
|
|
# Get log directory path from environment variable or use current directory
|
|
log_dir = os.getenv("LOG_DIR", os.getcwd())
|
|
log_file_path = os.path.abspath(os.path.join(log_dir, "lightrag_demo.log"))
|
|
|
|
print(f"\nLightRAG demo log file: {log_file_path}\n")
|
|
os.makedirs(os.path.dirname(log_dir), exist_ok=True)
|
|
|
|
# Get log file max size and backup count from environment variables
|
|
log_max_bytes = int(os.getenv("LOG_MAX_BYTES", 10485760)) # Default 10MB
|
|
log_backup_count = int(os.getenv("LOG_BACKUP_COUNT", 5)) # Default 5 backups
|
|
|
|
logging.config.dictConfig(
|
|
{
|
|
"version": 1,
|
|
"disable_existing_loggers": False,
|
|
"formatters": {
|
|
"default": {
|
|
"format": "%(levelname)s: %(message)s",
|
|
},
|
|
"detailed": {
|
|
"format": "%(asctime)s - %(name)s - %(levelname)s - %(message)s",
|
|
},
|
|
},
|
|
"handlers": {
|
|
"console": {
|
|
"formatter": "default",
|
|
"class": "logging.StreamHandler",
|
|
"stream": "ext://sys.stderr",
|
|
},
|
|
"file": {
|
|
"formatter": "detailed",
|
|
"class": "logging.handlers.RotatingFileHandler",
|
|
"filename": log_file_path,
|
|
"maxBytes": log_max_bytes,
|
|
"backupCount": log_backup_count,
|
|
"encoding": "utf-8",
|
|
},
|
|
},
|
|
"loggers": {
|
|
"lightrag": {
|
|
"handlers": ["console", "file"],
|
|
"level": "INFO",
|
|
"propagate": False,
|
|
},
|
|
},
|
|
}
|
|
)
|
|
|
|
# Set the logger level to INFO
|
|
logger.setLevel(logging.INFO)
|
|
# Enable verbose debug if needed
|
|
set_verbose_debug(os.getenv("VERBOSE_DEBUG", "false").lower() == "true")
|
|
|
|
|
|
if not os.path.exists(WORKING_DIR):
|
|
os.mkdir(WORKING_DIR)
|
|
|
|
|
|
async def initialize_rag():
|
|
rag = LightRAG(
|
|
working_dir=WORKING_DIR,
|
|
embedding_func=openai_embed,
|
|
llm_model_func=gpt_4o_mini_complete,
|
|
)
|
|
|
|
await rag.initialize_storages()
|
|
await initialize_pipeline_status()
|
|
|
|
return rag
|
|
|
|
|
|
async def main():
|
|
# Check if OPENAI_API_KEY environment variable exists
|
|
if not os.getenv("OPENAI_API_KEY"):
|
|
print(
|
|
"Error: OPENAI_API_KEY environment variable is not set. Please set this variable before running the program."
|
|
)
|
|
print("You can set the environment variable by running:")
|
|
print(" export OPENAI_API_KEY='your-openai-api-key'")
|
|
return # Exit the async function
|
|
|
|
try:
|
|
# Clear old data files
|
|
files_to_delete = [
|
|
"graph_chunk_entity_relation.graphml",
|
|
"kv_store_doc_status.json",
|
|
"kv_store_full_docs.json",
|
|
"kv_store_text_chunks.json",
|
|
"vdb_chunks.json",
|
|
"vdb_entities.json",
|
|
"vdb_relationships.json",
|
|
]
|
|
|
|
for file in files_to_delete:
|
|
file_path = os.path.join(WORKING_DIR, file)
|
|
if os.path.exists(file_path):
|
|
os.remove(file_path)
|
|
print(f"Deleting old file:: {file_path}")
|
|
|
|
# Initialize RAG instance
|
|
rag = await initialize_rag()
|
|
|
|
# Test embedding function
|
|
test_text = ["This is a test string for embedding."]
|
|
embedding = await rag.embedding_func(test_text)
|
|
embedding_dim = embedding.shape[1]
|
|
print("\n=======================")
|
|
print("Test embedding function")
|
|
print("========================")
|
|
print(f"Test dict: {test_text}")
|
|
print(f"Detected embedding dimension: {embedding_dim}\n\n")
|
|
|
|
with open("./book.txt", "r", encoding="utf-8") as f:
|
|
await rag.ainsert(f.read())
|
|
|
|
# Perform naive search
|
|
print("\n=====================")
|
|
print("Query mode: naive")
|
|
print("=====================")
|
|
print(
|
|
await rag.aquery(
|
|
"What are the top themes in this story?", param=QueryParam(mode="naive")
|
|
)
|
|
)
|
|
|
|
# Perform local search
|
|
print("\n=====================")
|
|
print("Query mode: local")
|
|
print("=====================")
|
|
print(
|
|
await rag.aquery(
|
|
"What are the top themes in this story?", param=QueryParam(mode="local")
|
|
)
|
|
)
|
|
|
|
# Perform global search
|
|
print("\n=====================")
|
|
print("Query mode: global")
|
|
print("=====================")
|
|
print(
|
|
await rag.aquery(
|
|
"What are the top themes in this story?",
|
|
param=QueryParam(mode="global"),
|
|
)
|
|
)
|
|
|
|
# Perform hybrid search
|
|
print("\n=====================")
|
|
print("Query mode: hybrid")
|
|
print("=====================")
|
|
print(
|
|
await rag.aquery(
|
|
"What are the top themes in this story?",
|
|
param=QueryParam(mode="hybrid"),
|
|
)
|
|
)
|
|
except Exception as e:
|
|
print(f"An error occurred: {e}")
|
|
finally:
|
|
if rag:
|
|
await rag.finalize_storages()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# Configure logging before running the main function
|
|
configure_logging()
|
|
asyncio.run(main())
|
|
print("\nDone!")
|