LightRAG/lightrag/lightrag.py
2025-06-26 01:00:54 +08:00

2359 lines
96 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from __future__ import annotations
import traceback
import asyncio
import configparser
import os
import time
import warnings
from dataclasses import asdict, dataclass, field
from datetime import datetime, timezone
from functools import partial
from typing import (
Any,
AsyncIterator,
Callable,
Iterator,
cast,
final,
Literal,
Optional,
List,
Dict,
)
from lightrag.constants import (
DEFAULT_MAX_TOKEN_SUMMARY,
DEFAULT_FORCE_LLM_SUMMARY_ON_MERGE,
)
from lightrag.utils import get_env_value
from lightrag.kg import (
STORAGES,
verify_storage_implementation,
)
from lightrag.kg.shared_storage import (
get_namespace_data,
get_pipeline_status_lock,
get_graph_db_lock,
)
from .base import (
BaseGraphStorage,
BaseKVStorage,
BaseVectorStorage,
DocProcessingStatus,
DocStatus,
DocStatusStorage,
QueryParam,
StorageNameSpace,
StoragesStatus,
DeletionResult,
)
from .namespace import NameSpace, make_namespace
from .operate import (
chunking_by_token_size,
extract_entities,
merge_nodes_and_edges,
kg_query,
naive_query,
query_with_keywords,
_rebuild_knowledge_from_chunks,
)
from .constants import GRAPH_FIELD_SEP
from .utils import (
Tokenizer,
TiktokenTokenizer,
EmbeddingFunc,
always_get_an_event_loop,
compute_mdhash_id,
convert_response_to_json,
lazy_external_import,
priority_limit_async_func_call,
get_content_summary,
clean_text,
check_storage_env_vars,
logger,
)
from .types import KnowledgeGraph
from dotenv import load_dotenv
# use the .env that is inside the current folder
# allows to use different .env file for each lightrag instance
# the OS environment variables take precedence over the .env file
load_dotenv(dotenv_path=".env", override=False)
# TODO: TO REMOVE @Yannick
config = configparser.ConfigParser()
config.read("config.ini", "utf-8")
@final
@dataclass
class LightRAG:
"""LightRAG: Simple and Fast Retrieval-Augmented Generation."""
# Directory
# ---
working_dir: str = field(
default=f"./lightrag_cache_{datetime.now().strftime('%Y-%m-%d-%H:%M:%S')}"
)
"""Directory where cache and temporary files are stored."""
# Storage
# ---
kv_storage: str = field(default="JsonKVStorage")
"""Storage backend for key-value data."""
vector_storage: str = field(default="NanoVectorDBStorage")
"""Storage backend for vector embeddings."""
graph_storage: str = field(default="NetworkXStorage")
"""Storage backend for knowledge graphs."""
doc_status_storage: str = field(default="JsonDocStatusStorage")
"""Storage type for tracking document processing statuses."""
# Logging (Deprecated, use setup_logger in utils.py instead)
# ---
log_level: int | None = field(default=None)
log_file_path: str | None = field(default=None)
# Entity extraction
# ---
entity_extract_max_gleaning: int = field(default=1)
"""Maximum number of entity extraction attempts for ambiguous content."""
summary_to_max_tokens: int = field(
default=get_env_value("MAX_TOKEN_SUMMARY", DEFAULT_MAX_TOKEN_SUMMARY, int)
)
force_llm_summary_on_merge: int = field(
default=get_env_value(
"FORCE_LLM_SUMMARY_ON_MERGE", DEFAULT_FORCE_LLM_SUMMARY_ON_MERGE, int
)
)
# Text chunking
# ---
chunk_token_size: int = field(default=int(os.getenv("CHUNK_SIZE", 1200)))
"""Maximum number of tokens per text chunk when splitting documents."""
chunk_overlap_token_size: int = field(
default=int(os.getenv("CHUNK_OVERLAP_SIZE", 100))
)
"""Number of overlapping tokens between consecutive text chunks to preserve context."""
tokenizer: Optional[Tokenizer] = field(default=None)
"""
A function that returns a Tokenizer instance.
If None, and a `tiktoken_model_name` is provided, a TiktokenTokenizer will be created.
If both are None, the default TiktokenTokenizer is used.
"""
tiktoken_model_name: str = field(default="gpt-4o-mini")
"""Model name used for tokenization when chunking text with tiktoken. Defaults to `gpt-4o-mini`."""
chunking_func: Callable[
[
Tokenizer,
str,
Optional[str],
bool,
int,
int,
],
List[Dict[str, Any]],
] = field(default_factory=lambda: chunking_by_token_size)
"""
Custom chunking function for splitting text into chunks before processing.
The function should take the following parameters:
- `tokenizer`: A Tokenizer instance to use for tokenization.
- `content`: The text to be split into chunks.
- `split_by_character`: The character to split the text on. If None, the text is split into chunks of `chunk_token_size` tokens.
- `split_by_character_only`: If True, the text is split only on the specified character.
- `chunk_token_size`: The maximum number of tokens per chunk.
- `chunk_overlap_token_size`: The number of overlapping tokens between consecutive chunks.
The function should return a list of dictionaries, where each dictionary contains the following keys:
- `tokens`: The number of tokens in the chunk.
- `content`: The text content of the chunk.
Defaults to `chunking_by_token_size` if not specified.
"""
# Embedding
# ---
embedding_func: EmbeddingFunc | None = field(default=None)
"""Function for computing text embeddings. Must be set before use."""
embedding_batch_num: int = field(default=int(os.getenv("EMBEDDING_BATCH_NUM", 32)))
"""Batch size for embedding computations."""
embedding_func_max_async: int = field(
default=int(os.getenv("EMBEDDING_FUNC_MAX_ASYNC", 16))
)
"""Maximum number of concurrent embedding function calls."""
embedding_cache_config: dict[str, Any] = field(
default_factory=lambda: {
"enabled": False,
"similarity_threshold": 0.95,
"use_llm_check": False,
}
)
"""Configuration for embedding cache.
- enabled: If True, enables caching to avoid redundant computations.
- similarity_threshold: Minimum similarity score to use cached embeddings.
- use_llm_check: If True, validates cached embeddings using an LLM.
"""
# LLM Configuration
# ---
llm_model_func: Callable[..., object] | None = field(default=None)
"""Function for interacting with the large language model (LLM). Must be set before use."""
llm_model_name: str = field(default="gpt-4o-mini")
"""Name of the LLM model used for generating responses."""
llm_model_max_token_size: int = field(default=int(os.getenv("MAX_TOKENS", 32768)))
"""Maximum number of tokens allowed per LLM response."""
llm_model_max_async: int = field(default=int(os.getenv("MAX_ASYNC", 4)))
"""Maximum number of concurrent LLM calls."""
llm_model_kwargs: dict[str, Any] = field(default_factory=dict)
"""Additional keyword arguments passed to the LLM model function."""
# Storage
# ---
vector_db_storage_cls_kwargs: dict[str, Any] = field(default_factory=dict)
"""Additional parameters for vector database storage."""
# TODOdeprecated, remove in the future, use WORKSPACE instead
namespace_prefix: str = field(default="")
"""Prefix for namespacing stored data across different environments."""
enable_llm_cache: bool = field(default=True)
"""Enables caching for LLM responses to avoid redundant computations."""
enable_llm_cache_for_entity_extract: bool = field(default=True)
"""If True, enables caching for entity extraction steps to reduce LLM costs."""
# Extensions
# ---
max_parallel_insert: int = field(default=int(os.getenv("MAX_PARALLEL_INSERT", 2)))
"""Maximum number of parallel insert operations."""
addon_params: dict[str, Any] = field(
default_factory=lambda: {
"language": get_env_value("SUMMARY_LANGUAGE", "English", str)
}
)
# Storages Management
# ---
auto_manage_storages_states: bool = field(default=True)
"""If True, lightrag will automatically calls initialize_storages and finalize_storages at the appropriate times."""
# Storages Management
# ---
convert_response_to_json_func: Callable[[str], dict[str, Any]] = field(
default_factory=lambda: convert_response_to_json
)
"""
Custom function for converting LLM responses to JSON format.
The default function is :func:`.utils.convert_response_to_json`.
"""
cosine_better_than_threshold: float = field(
default=float(os.getenv("COSINE_THRESHOLD", 0.2))
)
_storages_status: StoragesStatus = field(default=StoragesStatus.NOT_CREATED)
def __post_init__(self):
from lightrag.kg.shared_storage import (
initialize_share_data,
)
# Handle deprecated parameters
if self.log_level is not None:
warnings.warn(
"WARNING: log_level parameter is deprecated, use setup_logger in utils.py instead",
UserWarning,
stacklevel=2,
)
if self.log_file_path is not None:
warnings.warn(
"WARNING: log_file_path parameter is deprecated, use setup_logger in utils.py instead",
UserWarning,
stacklevel=2,
)
# Remove these attributes to prevent their use
if hasattr(self, "log_level"):
delattr(self, "log_level")
if hasattr(self, "log_file_path"):
delattr(self, "log_file_path")
initialize_share_data()
if not os.path.exists(self.working_dir):
logger.info(f"Creating working directory {self.working_dir}")
os.makedirs(self.working_dir)
# Verify storage implementation compatibility and environment variables
storage_configs = [
("KV_STORAGE", self.kv_storage),
("VECTOR_STORAGE", self.vector_storage),
("GRAPH_STORAGE", self.graph_storage),
("DOC_STATUS_STORAGE", self.doc_status_storage),
]
for storage_type, storage_name in storage_configs:
# Verify storage implementation compatibility
verify_storage_implementation(storage_type, storage_name)
# Check environment variables
check_storage_env_vars(storage_name)
# Ensure vector_db_storage_cls_kwargs has required fields
self.vector_db_storage_cls_kwargs = {
"cosine_better_than_threshold": self.cosine_better_than_threshold,
**self.vector_db_storage_cls_kwargs,
}
# Init Tokenizer
# Post-initialization hook to handle backward compatabile tokenizer initialization based on provided parameters
if self.tokenizer is None:
if self.tiktoken_model_name:
self.tokenizer = TiktokenTokenizer(self.tiktoken_model_name)
else:
self.tokenizer = TiktokenTokenizer()
# Fix global_config now
global_config = asdict(self)
_print_config = ",\n ".join([f"{k} = {v}" for k, v in global_config.items()])
logger.debug(f"LightRAG init with param:\n {_print_config}\n")
# Init Embedding
self.embedding_func = priority_limit_async_func_call(
self.embedding_func_max_async
)(self.embedding_func)
# Initialize all storages
self.key_string_value_json_storage_cls: type[BaseKVStorage] = (
self._get_storage_class(self.kv_storage)
) # type: ignore
self.vector_db_storage_cls: type[BaseVectorStorage] = self._get_storage_class(
self.vector_storage
) # type: ignore
self.graph_storage_cls: type[BaseGraphStorage] = self._get_storage_class(
self.graph_storage
) # type: ignore
self.key_string_value_json_storage_cls = partial( # type: ignore
self.key_string_value_json_storage_cls, global_config=global_config
)
self.vector_db_storage_cls = partial( # type: ignore
self.vector_db_storage_cls, global_config=global_config
)
self.graph_storage_cls = partial( # type: ignore
self.graph_storage_cls, global_config=global_config
)
# Initialize document status storage
self.doc_status_storage_cls = self._get_storage_class(self.doc_status_storage)
self.llm_response_cache: BaseKVStorage = self.key_string_value_json_storage_cls( # type: ignore
namespace=make_namespace(
self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE
),
global_config=asdict(
self
), # Add global_config to ensure cache works properly
embedding_func=self.embedding_func,
)
self.full_docs: BaseKVStorage = self.key_string_value_json_storage_cls( # type: ignore
namespace=make_namespace(
self.namespace_prefix, NameSpace.KV_STORE_FULL_DOCS
),
embedding_func=self.embedding_func,
)
# TODO: deprecating, text_chunks is redundant with chunks_vdb
self.text_chunks: BaseKVStorage = self.key_string_value_json_storage_cls( # type: ignore
namespace=make_namespace(
self.namespace_prefix, NameSpace.KV_STORE_TEXT_CHUNKS
),
embedding_func=self.embedding_func,
)
self.chunk_entity_relation_graph: BaseGraphStorage = self.graph_storage_cls( # type: ignore
namespace=make_namespace(
self.namespace_prefix, NameSpace.GRAPH_STORE_CHUNK_ENTITY_RELATION
),
embedding_func=self.embedding_func,
)
self.entities_vdb: BaseVectorStorage = self.vector_db_storage_cls( # type: ignore
namespace=make_namespace(
self.namespace_prefix, NameSpace.VECTOR_STORE_ENTITIES
),
embedding_func=self.embedding_func,
meta_fields={"entity_name", "source_id", "content", "file_path"},
)
self.relationships_vdb: BaseVectorStorage = self.vector_db_storage_cls( # type: ignore
namespace=make_namespace(
self.namespace_prefix, NameSpace.VECTOR_STORE_RELATIONSHIPS
),
embedding_func=self.embedding_func,
meta_fields={"src_id", "tgt_id", "source_id", "content", "file_path"},
)
self.chunks_vdb: BaseVectorStorage = self.vector_db_storage_cls( # type: ignore
namespace=make_namespace(
self.namespace_prefix, NameSpace.VECTOR_STORE_CHUNKS
),
embedding_func=self.embedding_func,
meta_fields={"full_doc_id", "content", "file_path"},
)
# Initialize document status storage
self.doc_status: DocStatusStorage = self.doc_status_storage_cls(
namespace=make_namespace(self.namespace_prefix, NameSpace.DOC_STATUS),
global_config=global_config,
embedding_func=None,
)
# Directly use llm_response_cache, don't create a new object
hashing_kv = self.llm_response_cache
self.llm_model_func = priority_limit_async_func_call(self.llm_model_max_async)(
partial(
self.llm_model_func, # type: ignore
hashing_kv=hashing_kv,
**self.llm_model_kwargs,
)
)
self._storages_status = StoragesStatus.CREATED
if self.auto_manage_storages_states:
self._run_async_safely(self.initialize_storages, "Storage Initialization")
def __del__(self):
if self.auto_manage_storages_states:
self._run_async_safely(self.finalize_storages, "Storage Finalization")
def _run_async_safely(self, async_func, action_name=""):
"""Safely execute an async function, avoiding event loop conflicts."""
try:
loop = always_get_an_event_loop()
if loop.is_running():
task = loop.create_task(async_func())
task.add_done_callback(
lambda t: logger.info(f"{action_name} completed!")
)
else:
loop.run_until_complete(async_func())
except RuntimeError:
logger.warning(
f"No running event loop, creating a new loop for {action_name}."
)
loop = asyncio.new_event_loop()
loop.run_until_complete(async_func())
loop.close()
async def initialize_storages(self):
"""Asynchronously initialize the storages"""
if self._storages_status == StoragesStatus.CREATED:
tasks = []
for storage in (
self.full_docs,
self.text_chunks,
self.entities_vdb,
self.relationships_vdb,
self.chunks_vdb,
self.chunk_entity_relation_graph,
self.llm_response_cache,
self.doc_status,
):
if storage:
tasks.append(storage.initialize())
await asyncio.gather(*tasks)
self._storages_status = StoragesStatus.INITIALIZED
logger.debug("Initialized Storages")
async def finalize_storages(self):
"""Asynchronously finalize the storages"""
if self._storages_status == StoragesStatus.INITIALIZED:
tasks = []
for storage in (
self.full_docs,
self.text_chunks,
self.entities_vdb,
self.relationships_vdb,
self.chunks_vdb,
self.chunk_entity_relation_graph,
self.llm_response_cache,
self.doc_status,
):
if storage:
tasks.append(storage.finalize())
await asyncio.gather(*tasks)
self._storages_status = StoragesStatus.FINALIZED
logger.debug("Finalized Storages")
async def get_graph_labels(self):
text = await self.chunk_entity_relation_graph.get_all_labels()
return text
async def get_knowledge_graph(
self,
node_label: str,
max_depth: int = 3,
max_nodes: int = 1000,
) -> KnowledgeGraph:
"""Get knowledge graph for a given label
Args:
node_label (str): Label to get knowledge graph for
max_depth (int): Maximum depth of graph
max_nodes (int, optional): Maximum number of nodes to return. Defaults to 1000.
Returns:
KnowledgeGraph: Knowledge graph containing nodes and edges
"""
return await self.chunk_entity_relation_graph.get_knowledge_graph(
node_label, max_depth, max_nodes
)
def _get_storage_class(self, storage_name: str) -> Callable[..., Any]:
import_path = STORAGES[storage_name]
storage_class = lazy_external_import(import_path, storage_name)
return storage_class
def insert(
self,
input: str | list[str],
split_by_character: str | None = None,
split_by_character_only: bool = False,
ids: str | list[str] | None = None,
file_paths: str | list[str] | None = None,
) -> None:
"""Sync Insert documents with checkpoint support
Args:
input: Single document string or list of document strings
split_by_character: if split_by_character is not None, split the string by character, if chunk longer than
chunk_token_size, it will be split again by token size.
split_by_character_only: if split_by_character_only is True, split the string by character only, when
split_by_character is None, this parameter is ignored.
ids: single string of the document ID or list of unique document IDs, if not provided, MD5 hash IDs will be generated
file_paths: single string of the file path or list of file paths, used for citation
"""
loop = always_get_an_event_loop()
loop.run_until_complete(
self.ainsert(
input, split_by_character, split_by_character_only, ids, file_paths
)
)
async def ainsert(
self,
input: str | list[str],
split_by_character: str | None = None,
split_by_character_only: bool = False,
ids: str | list[str] | None = None,
file_paths: str | list[str] | None = None,
) -> None:
"""Async Insert documents with checkpoint support
Args:
input: Single document string or list of document strings
split_by_character: if split_by_character is not None, split the string by character, if chunk longer than
chunk_token_size, it will be split again by token size.
split_by_character_only: if split_by_character_only is True, split the string by character only, when
split_by_character is None, this parameter is ignored.
ids: list of unique document IDs, if not provided, MD5 hash IDs will be generated
file_paths: list of file paths corresponding to each document, used for citation
"""
await self.apipeline_enqueue_documents(input, ids, file_paths)
await self.apipeline_process_enqueue_documents(
split_by_character, split_by_character_only
)
# TODO: deprecated, use insert instead
def insert_custom_chunks(
self,
full_text: str,
text_chunks: list[str],
doc_id: str | list[str] | None = None,
) -> None:
loop = always_get_an_event_loop()
loop.run_until_complete(
self.ainsert_custom_chunks(full_text, text_chunks, doc_id)
)
# TODO: deprecated, use ainsert instead
async def ainsert_custom_chunks(
self, full_text: str, text_chunks: list[str], doc_id: str | None = None
) -> None:
update_storage = False
try:
# Clean input texts
full_text = clean_text(full_text)
text_chunks = [clean_text(chunk) for chunk in text_chunks]
file_path = ""
# Process cleaned texts
if doc_id is None:
doc_key = compute_mdhash_id(full_text, prefix="doc-")
else:
doc_key = doc_id
new_docs = {doc_key: {"content": full_text}}
_add_doc_keys = await self.full_docs.filter_keys({doc_key})
new_docs = {k: v for k, v in new_docs.items() if k in _add_doc_keys}
if not len(new_docs):
logger.warning("This document is already in the storage.")
return
update_storage = True
logger.info(f"Inserting {len(new_docs)} docs")
inserting_chunks: dict[str, Any] = {}
for index, chunk_text in enumerate(text_chunks):
chunk_key = compute_mdhash_id(chunk_text, prefix="chunk-")
tokens = len(self.tokenizer.encode(chunk_text))
inserting_chunks[chunk_key] = {
"content": chunk_text,
"full_doc_id": doc_key,
"tokens": tokens,
"chunk_order_index": index,
"file_path": file_path,
}
doc_ids = set(inserting_chunks.keys())
add_chunk_keys = await self.text_chunks.filter_keys(doc_ids)
inserting_chunks = {
k: v for k, v in inserting_chunks.items() if k in add_chunk_keys
}
if not len(inserting_chunks):
logger.warning("All chunks are already in the storage.")
return
tasks = [
self.chunks_vdb.upsert(inserting_chunks),
self._process_entity_relation_graph(inserting_chunks),
self.full_docs.upsert(new_docs),
self.text_chunks.upsert(inserting_chunks),
]
await asyncio.gather(*tasks)
finally:
if update_storage:
await self._insert_done()
async def apipeline_enqueue_documents(
self,
input: str | list[str],
ids: list[str] | None = None,
file_paths: str | list[str] | None = None,
) -> None:
"""
Pipeline for Processing Documents
1. Validate ids if provided or generate MD5 hash IDs
2. Remove duplicate contents
3. Generate document initial status
4. Filter out already processed documents
5. Enqueue document in status
Args:
input: Single document string or list of document strings
ids: list of unique document IDs, if not provided, MD5 hash IDs will be generated
file_paths: list of file paths corresponding to each document, used for citation
"""
if isinstance(input, str):
input = [input]
if isinstance(ids, str):
ids = [ids]
if isinstance(file_paths, str):
file_paths = [file_paths]
# If file_paths is provided, ensure it matches the number of documents
if file_paths is not None:
if isinstance(file_paths, str):
file_paths = [file_paths]
if len(file_paths) != len(input):
raise ValueError(
"Number of file paths must match the number of documents"
)
else:
# If no file paths provided, use placeholder
file_paths = ["unknown_source"] * len(input)
# 1. Validate ids if provided or generate MD5 hash IDs
if ids is not None:
# Check if the number of IDs matches the number of documents
if len(ids) != len(input):
raise ValueError("Number of IDs must match the number of documents")
# Check if IDs are unique
if len(ids) != len(set(ids)):
raise ValueError("IDs must be unique")
# Generate contents dict of IDs provided by user and documents
contents = {
id_: {"content": doc, "file_path": path}
for id_, doc, path in zip(ids, input, file_paths)
}
else:
# Clean input text and remove duplicates
cleaned_input = [
(clean_text(doc), path) for doc, path in zip(input, file_paths)
]
unique_content_with_paths = {}
# Keep track of unique content and their paths
for content, path in cleaned_input:
if content not in unique_content_with_paths:
unique_content_with_paths[content] = path
# Generate contents dict of MD5 hash IDs and documents with paths
contents = {
compute_mdhash_id(content, prefix="doc-"): {
"content": content,
"file_path": path,
}
for content, path in unique_content_with_paths.items()
}
# 2. Remove duplicate contents
unique_contents = {}
for id_, content_data in contents.items():
content = content_data["content"]
file_path = content_data["file_path"]
if content not in unique_contents:
unique_contents[content] = (id_, file_path)
# Reconstruct contents with unique content
contents = {
id_: {"content": content, "file_path": file_path}
for content, (id_, file_path) in unique_contents.items()
}
# 3. Generate document initial status
new_docs: dict[str, Any] = {
id_: {
"status": DocStatus.PENDING,
"content": content_data["content"],
"content_summary": get_content_summary(content_data["content"]),
"content_length": len(content_data["content"]),
"created_at": datetime.now(timezone.utc).isoformat(),
"updated_at": datetime.now(timezone.utc).isoformat(),
"file_path": content_data[
"file_path"
], # Store file path in document status
}
for id_, content_data in contents.items()
}
# 4. Filter out already processed documents
# Get docs ids
all_new_doc_ids = set(new_docs.keys())
# Exclude IDs of documents that are already in progress
unique_new_doc_ids = await self.doc_status.filter_keys(all_new_doc_ids)
# Log ignored document IDs
ignored_ids = [
doc_id for doc_id in unique_new_doc_ids if doc_id not in new_docs
]
if ignored_ids:
logger.warning(
f"Ignoring {len(ignored_ids)} document IDs not found in new_docs"
)
for doc_id in ignored_ids:
logger.warning(f"Ignored document ID: {doc_id}")
# Filter new_docs to only include documents with unique IDs
new_docs = {
doc_id: new_docs[doc_id]
for doc_id in unique_new_doc_ids
if doc_id in new_docs
}
if not new_docs:
logger.info("No new unique documents were found.")
return
# 5. Store status document
await self.doc_status.upsert(new_docs)
logger.info(f"Stored {len(new_docs)} new unique documents")
async def apipeline_process_enqueue_documents(
self,
split_by_character: str | None = None,
split_by_character_only: bool = False,
) -> None:
"""
Process pending documents by splitting them into chunks, processing
each chunk for entity and relation extraction, and updating the
document status.
1. Get all pending, failed, and abnormally terminated processing documents.
2. Split document content into chunks
3. Process each chunk for entity and relation extraction
4. Update the document status
"""
# Get pipeline status shared data and lock
pipeline_status = await get_namespace_data("pipeline_status")
pipeline_status_lock = get_pipeline_status_lock()
# Check if another process is already processing the queue
async with pipeline_status_lock:
# Ensure only one worker is processing documents
if not pipeline_status.get("busy", False):
processing_docs, failed_docs, pending_docs = await asyncio.gather(
self.doc_status.get_docs_by_status(DocStatus.PROCESSING),
self.doc_status.get_docs_by_status(DocStatus.FAILED),
self.doc_status.get_docs_by_status(DocStatus.PENDING),
)
to_process_docs: dict[str, DocProcessingStatus] = {}
to_process_docs.update(processing_docs)
to_process_docs.update(failed_docs)
to_process_docs.update(pending_docs)
if not to_process_docs:
logger.info("No documents to process")
return
pipeline_status.update(
{
"busy": True,
"job_name": "Default Job",
"job_start": datetime.now(timezone.utc).isoformat(),
"docs": 0,
"batchs": 0, # Total number of files to be processed
"cur_batch": 0, # Number of files already processed
"request_pending": False, # Clear any previous request
"latest_message": "",
}
)
# Cleaning history_messages without breaking it as a shared list object
del pipeline_status["history_messages"][:]
else:
# Another process is busy, just set request flag and return
pipeline_status["request_pending"] = True
logger.info(
"Another process is already processing the document queue. Request queued."
)
return
try:
# Process documents until no more documents or requests
while True:
if not to_process_docs:
log_message = "All documents have been processed or are duplicates"
logger.info(log_message)
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
break
log_message = f"Processing {len(to_process_docs)} document(s)"
logger.info(log_message)
# Update pipeline_status, batchs now represents the total number of files to be processed
pipeline_status["docs"] = len(to_process_docs)
pipeline_status["batchs"] = len(to_process_docs)
pipeline_status["cur_batch"] = 0
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
# Get first document's file path and total count for job name
first_doc_id, first_doc = next(iter(to_process_docs.items()))
first_doc_path = first_doc.file_path
path_prefix = first_doc_path[:20] + (
"..." if len(first_doc_path) > 20 else ""
)
total_files = len(to_process_docs)
job_name = f"{path_prefix}[{total_files} files]"
pipeline_status["job_name"] = job_name
# Create a counter to track the number of processed files
processed_count = 0
# Create a semaphore to limit the number of concurrent file processing
semaphore = asyncio.Semaphore(self.max_parallel_insert)
async def process_document(
doc_id: str,
status_doc: DocProcessingStatus,
split_by_character: str | None,
split_by_character_only: bool,
pipeline_status: dict,
pipeline_status_lock: asyncio.Lock,
semaphore: asyncio.Semaphore,
) -> None:
"""Process single document"""
file_extraction_stage_ok = False
async with semaphore:
nonlocal processed_count
current_file_number = 0
try:
# Get file path from status document
file_path = getattr(
status_doc, "file_path", "unknown_source"
)
async with pipeline_status_lock:
# Update processed file count and save current file number
processed_count += 1
current_file_number = (
processed_count # Save the current file number
)
pipeline_status["cur_batch"] = processed_count
log_message = f"Extracting stage {current_file_number}/{total_files}: {file_path}"
logger.info(log_message)
pipeline_status["history_messages"].append(log_message)
log_message = f"Processing d-id: {doc_id}"
logger.info(log_message)
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
# Generate chunks from document
chunks: dict[str, Any] = {
compute_mdhash_id(dp["content"], prefix="chunk-"): {
**dp,
"full_doc_id": doc_id,
"file_path": file_path, # Add file path to each chunk
}
for dp in self.chunking_func(
self.tokenizer,
status_doc.content,
split_by_character,
split_by_character_only,
self.chunk_overlap_token_size,
self.chunk_token_size,
)
}
# Process document (text chunks and full docs) in parallel
# Create tasks with references for potential cancellation
doc_status_task = asyncio.create_task(
self.doc_status.upsert(
{
doc_id: {
"status": DocStatus.PROCESSING,
"chunks_count": len(chunks),
"content": status_doc.content,
"content_summary": status_doc.content_summary,
"content_length": status_doc.content_length,
"created_at": status_doc.created_at,
"updated_at": datetime.now(
timezone.utc
).isoformat(),
"file_path": file_path,
}
}
)
)
chunks_vdb_task = asyncio.create_task(
self.chunks_vdb.upsert(chunks)
)
entity_relation_task = asyncio.create_task(
self._process_entity_relation_graph(
chunks, pipeline_status, pipeline_status_lock
)
)
full_docs_task = asyncio.create_task(
self.full_docs.upsert(
{doc_id: {"content": status_doc.content}}
)
)
text_chunks_task = asyncio.create_task(
self.text_chunks.upsert(chunks)
)
tasks = [
doc_status_task,
chunks_vdb_task,
entity_relation_task,
full_docs_task,
text_chunks_task,
]
await asyncio.gather(*tasks)
file_extraction_stage_ok = True
except Exception as e:
# Log error and update pipeline status
logger.error(traceback.format_exc())
error_msg = f"Failed to extract document {current_file_number}/{total_files}: {file_path}"
logger.error(error_msg)
async with pipeline_status_lock:
pipeline_status["latest_message"] = error_msg
pipeline_status["history_messages"].append(
traceback.format_exc()
)
pipeline_status["history_messages"].append(error_msg)
# Cancel other tasks as they are no longer meaningful
for task in [
chunks_vdb_task,
entity_relation_task,
full_docs_task,
text_chunks_task,
]:
if not task.done():
task.cancel()
# Persistent llm cache
if self.llm_response_cache:
await self.llm_response_cache.index_done_callback()
# Update document status to failed
await self.doc_status.upsert(
{
doc_id: {
"status": DocStatus.FAILED,
"error": str(e),
"content": status_doc.content,
"content_summary": status_doc.content_summary,
"content_length": status_doc.content_length,
"created_at": status_doc.created_at,
"updated_at": datetime.now(
timezone.utc
).isoformat(),
"file_path": file_path,
}
}
)
# Semphore released, concurrency controlled by graph_db_lock in merge_nodes_and_edges instead
if file_extraction_stage_ok:
try:
# Get chunk_results from entity_relation_task
chunk_results = await entity_relation_task
await merge_nodes_and_edges(
chunk_results=chunk_results, # result collected from entity_relation_task
knowledge_graph_inst=self.chunk_entity_relation_graph,
entity_vdb=self.entities_vdb,
relationships_vdb=self.relationships_vdb,
global_config=asdict(self),
pipeline_status=pipeline_status,
pipeline_status_lock=pipeline_status_lock,
llm_response_cache=self.llm_response_cache,
current_file_number=current_file_number,
total_files=total_files,
file_path=file_path,
)
await self.doc_status.upsert(
{
doc_id: {
"status": DocStatus.PROCESSED,
"chunks_count": len(chunks),
"content": status_doc.content,
"content_summary": status_doc.content_summary,
"content_length": status_doc.content_length,
"created_at": status_doc.created_at,
"updated_at": datetime.now(
timezone.utc
).isoformat(),
"file_path": file_path,
}
}
)
# Call _insert_done after processing each file
await self._insert_done()
async with pipeline_status_lock:
log_message = f"Completed processing file {current_file_number}/{total_files}: {file_path}"
logger.info(log_message)
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
except Exception as e:
# Log error and update pipeline status
logger.error(traceback.format_exc())
error_msg = f"Merging stage failed in document {current_file_number}/{total_files}: {file_path}"
logger.error(error_msg)
async with pipeline_status_lock:
pipeline_status["latest_message"] = error_msg
pipeline_status["history_messages"].append(
traceback.format_exc()
)
pipeline_status["history_messages"].append(error_msg)
# Persistent llm cache
if self.llm_response_cache:
await self.llm_response_cache.index_done_callback()
# Update document status to failed
await self.doc_status.upsert(
{
doc_id: {
"status": DocStatus.FAILED,
"error": str(e),
"content": status_doc.content,
"content_summary": status_doc.content_summary,
"content_length": status_doc.content_length,
"created_at": status_doc.created_at,
"updated_at": datetime.now().isoformat(),
"file_path": file_path,
}
}
)
# Create processing tasks for all documents
doc_tasks = []
for doc_id, status_doc in to_process_docs.items():
doc_tasks.append(
process_document(
doc_id,
status_doc,
split_by_character,
split_by_character_only,
pipeline_status,
pipeline_status_lock,
semaphore,
)
)
# Wait for all document processing to complete
await asyncio.gather(*doc_tasks)
# Check if there's a pending request to process more documents (with lock)
has_pending_request = False
async with pipeline_status_lock:
has_pending_request = pipeline_status.get("request_pending", False)
if has_pending_request:
# Clear the request flag before checking for more documents
pipeline_status["request_pending"] = False
if not has_pending_request:
break
log_message = "Processing additional documents due to pending request"
logger.info(log_message)
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
# Check for pending documents again
processing_docs, failed_docs, pending_docs = await asyncio.gather(
self.doc_status.get_docs_by_status(DocStatus.PROCESSING),
self.doc_status.get_docs_by_status(DocStatus.FAILED),
self.doc_status.get_docs_by_status(DocStatus.PENDING),
)
to_process_docs = {}
to_process_docs.update(processing_docs)
to_process_docs.update(failed_docs)
to_process_docs.update(pending_docs)
finally:
log_message = "Document processing pipeline completed"
logger.info(log_message)
# Always reset busy status when done or if an exception occurs (with lock)
async with pipeline_status_lock:
pipeline_status["busy"] = False
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
async def _process_entity_relation_graph(
self, chunk: dict[str, Any], pipeline_status=None, pipeline_status_lock=None
) -> list:
try:
chunk_results = await extract_entities(
chunk,
global_config=asdict(self),
pipeline_status=pipeline_status,
pipeline_status_lock=pipeline_status_lock,
llm_response_cache=self.llm_response_cache,
)
return chunk_results
except Exception as e:
error_msg = f"Failed to extract entities and relationships: {str(e)}"
logger.error(error_msg)
async with pipeline_status_lock:
pipeline_status["latest_message"] = error_msg
pipeline_status["history_messages"].append(error_msg)
raise e
async def _insert_done(
self, pipeline_status=None, pipeline_status_lock=None
) -> None:
tasks = [
cast(StorageNameSpace, storage_inst).index_done_callback()
for storage_inst in [ # type: ignore
self.full_docs,
self.doc_status,
self.text_chunks,
self.llm_response_cache,
self.entities_vdb,
self.relationships_vdb,
self.chunks_vdb,
self.chunk_entity_relation_graph,
]
if storage_inst is not None
]
await asyncio.gather(*tasks)
log_message = "In memory DB persist to disk"
logger.info(log_message)
if pipeline_status is not None and pipeline_status_lock is not None:
async with pipeline_status_lock:
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
def insert_custom_kg(
self, custom_kg: dict[str, Any], full_doc_id: str = None
) -> None:
loop = always_get_an_event_loop()
loop.run_until_complete(self.ainsert_custom_kg(custom_kg, full_doc_id))
async def ainsert_custom_kg(
self,
custom_kg: dict[str, Any],
full_doc_id: str = None,
) -> None:
update_storage = False
try:
# Insert chunks into vector storage
all_chunks_data: dict[str, dict[str, str]] = {}
chunk_to_source_map: dict[str, str] = {}
for chunk_data in custom_kg.get("chunks", []):
chunk_content = clean_text(chunk_data["content"])
source_id = chunk_data["source_id"]
file_path = chunk_data.get("file_path", "custom_kg")
tokens = len(self.tokenizer.encode(chunk_content))
chunk_order_index = (
0
if "chunk_order_index" not in chunk_data.keys()
else chunk_data["chunk_order_index"]
)
chunk_id = compute_mdhash_id(chunk_content, prefix="chunk-")
chunk_entry = {
"content": chunk_content,
"source_id": source_id,
"tokens": tokens,
"chunk_order_index": chunk_order_index,
"full_doc_id": full_doc_id
if full_doc_id is not None
else source_id,
"file_path": file_path,
"status": DocStatus.PROCESSED,
}
all_chunks_data[chunk_id] = chunk_entry
chunk_to_source_map[source_id] = chunk_id
update_storage = True
if all_chunks_data:
await asyncio.gather(
self.chunks_vdb.upsert(all_chunks_data),
self.text_chunks.upsert(all_chunks_data),
)
# Insert entities into knowledge graph
all_entities_data: list[dict[str, str]] = []
for entity_data in custom_kg.get("entities", []):
entity_name = entity_data["entity_name"]
entity_type = entity_data.get("entity_type", "UNKNOWN")
description = entity_data.get("description", "No description provided")
source_chunk_id = entity_data.get("source_id", "UNKNOWN")
source_id = chunk_to_source_map.get(source_chunk_id, "UNKNOWN")
file_path = entity_data.get("file_path", "custom_kg")
# Log if source_id is UNKNOWN
if source_id == "UNKNOWN":
logger.warning(
f"Entity '{entity_name}' has an UNKNOWN source_id. Please check the source mapping."
)
# Prepare node data
node_data: dict[str, str] = {
"entity_id": entity_name,
"entity_type": entity_type,
"description": description,
"source_id": source_id,
"file_path": file_path,
"created_at": int(time.time()),
}
# Insert node data into the knowledge graph
await self.chunk_entity_relation_graph.upsert_node(
entity_name, node_data=node_data
)
node_data["entity_name"] = entity_name
all_entities_data.append(node_data)
update_storage = True
# Insert relationships into knowledge graph
all_relationships_data: list[dict[str, str]] = []
for relationship_data in custom_kg.get("relationships", []):
src_id = relationship_data["src_id"]
tgt_id = relationship_data["tgt_id"]
description = relationship_data["description"]
keywords = relationship_data["keywords"]
weight = relationship_data.get("weight", 1.0)
source_chunk_id = relationship_data.get("source_id", "UNKNOWN")
source_id = chunk_to_source_map.get(source_chunk_id, "UNKNOWN")
file_path = relationship_data.get("file_path", "custom_kg")
# Log if source_id is UNKNOWN
if source_id == "UNKNOWN":
logger.warning(
f"Relationship from '{src_id}' to '{tgt_id}' has an UNKNOWN source_id. Please check the source mapping."
)
# Check if nodes exist in the knowledge graph
for need_insert_id in [src_id, tgt_id]:
if not (
await self.chunk_entity_relation_graph.has_node(need_insert_id)
):
await self.chunk_entity_relation_graph.upsert_node(
need_insert_id,
node_data={
"entity_id": need_insert_id,
"source_id": source_id,
"description": "UNKNOWN",
"entity_type": "UNKNOWN",
"file_path": file_path,
"created_at": int(time.time()),
},
)
# Insert edge into the knowledge graph
await self.chunk_entity_relation_graph.upsert_edge(
src_id,
tgt_id,
edge_data={
"weight": weight,
"description": description,
"keywords": keywords,
"source_id": source_id,
"file_path": file_path,
"created_at": int(time.time()),
},
)
edge_data: dict[str, str] = {
"src_id": src_id,
"tgt_id": tgt_id,
"description": description,
"keywords": keywords,
"source_id": source_id,
"weight": weight,
"file_path": file_path,
"created_at": int(time.time()),
}
all_relationships_data.append(edge_data)
update_storage = True
# Insert entities into vector storage with consistent format
data_for_vdb = {
compute_mdhash_id(dp["entity_name"], prefix="ent-"): {
"content": dp["entity_name"] + "\n" + dp["description"],
"entity_name": dp["entity_name"],
"source_id": dp["source_id"],
"description": dp["description"],
"entity_type": dp["entity_type"],
"file_path": dp.get("file_path", "custom_kg"),
}
for dp in all_entities_data
}
await self.entities_vdb.upsert(data_for_vdb)
# Insert relationships into vector storage with consistent format
data_for_vdb = {
compute_mdhash_id(dp["src_id"] + dp["tgt_id"], prefix="rel-"): {
"src_id": dp["src_id"],
"tgt_id": dp["tgt_id"],
"source_id": dp["source_id"],
"content": f"{dp['keywords']}\t{dp['src_id']}\n{dp['tgt_id']}\n{dp['description']}",
"keywords": dp["keywords"],
"description": dp["description"],
"weight": dp["weight"],
"file_path": dp.get("file_path", "custom_kg"),
}
for dp in all_relationships_data
}
await self.relationships_vdb.upsert(data_for_vdb)
except Exception as e:
logger.error(f"Error in ainsert_custom_kg: {e}")
raise
finally:
if update_storage:
await self._insert_done()
def query(
self,
query: str,
param: QueryParam = QueryParam(),
system_prompt: str | None = None,
) -> str | Iterator[str]:
"""
Perform a sync query.
Args:
query (str): The query to be executed.
param (QueryParam): Configuration parameters for query execution.
prompt (Optional[str]): Custom prompts for fine-tuned control over the system's behavior. Defaults to None, which uses PROMPTS["rag_response"].
Returns:
str: The result of the query execution.
"""
loop = always_get_an_event_loop()
return loop.run_until_complete(self.aquery(query, param, system_prompt)) # type: ignore
async def aquery(
self,
query: str,
param: QueryParam = QueryParam(),
system_prompt: str | None = None,
) -> str | AsyncIterator[str]:
"""
Perform a async query.
Args:
query (str): The query to be executed.
param (QueryParam): Configuration parameters for query execution.
If param.model_func is provided, it will be used instead of the global model.
prompt (Optional[str]): Custom prompts for fine-tuned control over the system's behavior. Defaults to None, which uses PROMPTS["rag_response"].
Returns:
str: The result of the query execution.
"""
# If a custom model is provided in param, temporarily update global config
global_config = asdict(self)
# Save original query for vector search
param.original_query = query
if param.mode in ["local", "global", "hybrid", "mix"]:
response = await kg_query(
query.strip(),
self.chunk_entity_relation_graph,
self.entities_vdb,
self.relationships_vdb,
self.text_chunks,
param,
global_config,
hashing_kv=self.llm_response_cache,
system_prompt=system_prompt,
chunks_vdb=self.chunks_vdb,
)
elif param.mode == "naive":
response = await naive_query(
query.strip(),
self.chunks_vdb,
param,
global_config,
hashing_kv=self.llm_response_cache,
system_prompt=system_prompt,
)
elif param.mode == "bypass":
# Bypass mode: directly use LLM without knowledge retrieval
use_llm_func = param.model_func or global_config["llm_model_func"]
# Apply higher priority (8) to entity/relation summary tasks
use_llm_func = partial(use_llm_func, _priority=8)
param.stream = True if param.stream is None else param.stream
response = await use_llm_func(
query.strip(),
system_prompt=system_prompt,
history_messages=param.conversation_history,
stream=param.stream,
)
else:
raise ValueError(f"Unknown mode {param.mode}")
await self._query_done()
return response
# TODO: Deprecated, use user_prompt in QueryParam instead
def query_with_separate_keyword_extraction(
self, query: str, prompt: str, param: QueryParam = QueryParam()
):
"""
Query with separate keyword extraction step.
This method extracts keywords from the query first, then uses them for the query.
Args:
query: User query
prompt: Additional prompt for the query
param: Query parameters
Returns:
Query response
"""
loop = always_get_an_event_loop()
return loop.run_until_complete(
self.aquery_with_separate_keyword_extraction(query, prompt, param)
)
# TODO: Deprecated, use user_prompt in QueryParam instead
async def aquery_with_separate_keyword_extraction(
self, query: str, prompt: str, param: QueryParam = QueryParam()
) -> str | AsyncIterator[str]:
"""
Async version of query_with_separate_keyword_extraction.
Args:
query: User query
prompt: Additional prompt for the query
param: Query parameters
Returns:
Query response or async iterator
"""
response = await query_with_keywords(
query=query,
prompt=prompt,
param=param,
knowledge_graph_inst=self.chunk_entity_relation_graph,
entities_vdb=self.entities_vdb,
relationships_vdb=self.relationships_vdb,
chunks_vdb=self.chunks_vdb,
text_chunks_db=self.text_chunks,
global_config=asdict(self),
hashing_kv=self.llm_response_cache,
)
await self._query_done()
return response
async def _query_done(self):
await self.llm_response_cache.index_done_callback()
async def aclear_cache(self, modes: list[str] | None = None) -> None:
"""Clear cache data from the LLM response cache storage.
Args:
modes (list[str] | None): Modes of cache to clear. Options: ["default", "naive", "local", "global", "hybrid", "mix"].
"default" represents extraction cache.
If None, clears all cache.
Example:
# Clear all cache
await rag.aclear_cache()
# Clear local mode cache
await rag.aclear_cache(modes=["local"])
# Clear extraction cache
await rag.aclear_cache(modes=["default"])
"""
if not self.llm_response_cache:
logger.warning("No cache storage configured")
return
valid_modes = ["default", "naive", "local", "global", "hybrid", "mix"]
# Validate input
if modes and not all(mode in valid_modes for mode in modes):
raise ValueError(f"Invalid mode. Valid modes are: {valid_modes}")
try:
# Reset the cache storage for specified mode
if modes:
success = await self.llm_response_cache.drop_cache_by_modes(modes)
if success:
logger.info(f"Cleared cache for modes: {modes}")
else:
logger.warning(f"Failed to clear cache for modes: {modes}")
else:
# Clear all modes
success = await self.llm_response_cache.drop_cache_by_modes(valid_modes)
if success:
logger.info("Cleared all cache")
else:
logger.warning("Failed to clear all cache")
await self.llm_response_cache.index_done_callback()
except Exception as e:
logger.error(f"Error while clearing cache: {e}")
def clear_cache(self, modes: list[str] | None = None) -> None:
"""Synchronous version of aclear_cache."""
return always_get_an_event_loop().run_until_complete(self.aclear_cache(modes))
async def get_docs_by_status(
self, status: DocStatus
) -> dict[str, DocProcessingStatus]:
"""Get documents by status
Returns:
Dict with document id is keys and document status is values
"""
return await self.doc_status.get_docs_by_status(status)
async def aget_docs_by_ids(
self, ids: str | list[str]
) -> dict[str, DocProcessingStatus]:
"""Retrieves the processing status for one or more documents by their IDs.
Args:
ids: A single document ID (string) or a list of document IDs (list of strings).
Returns:
A dictionary where keys are the document IDs for which a status was found,
and values are the corresponding DocProcessingStatus objects. IDs that
are not found in the storage will be omitted from the result dictionary.
"""
if isinstance(ids, str):
# Ensure input is always a list of IDs for uniform processing
id_list = [ids]
elif (
ids is None
): # Handle potential None input gracefully, although type hint suggests str/list
logger.warning(
"aget_docs_by_ids called with None input, returning empty dict."
)
return {}
else:
# Assume input is already a list if not a string
id_list = ids
# Return early if the final list of IDs is empty
if not id_list:
logger.debug("aget_docs_by_ids called with an empty list of IDs.")
return {}
# Create tasks to fetch document statuses concurrently using the doc_status storage
tasks = [self.doc_status.get_by_id(doc_id) for doc_id in id_list]
# Execute tasks concurrently and gather the results. Results maintain order.
# Type hint indicates results can be DocProcessingStatus or None if not found.
results_list: list[Optional[DocProcessingStatus]] = await asyncio.gather(*tasks)
# Build the result dictionary, mapping found IDs to their statuses
found_statuses: dict[str, DocProcessingStatus] = {}
# Keep track of IDs for which no status was found (for logging purposes)
not_found_ids: list[str] = []
# Iterate through the results, correlating them back to the original IDs
for i, status_obj in enumerate(results_list):
doc_id = id_list[
i
] # Get the original ID corresponding to this result index
if status_obj:
# If a status object was returned (not None), add it to the result dict
found_statuses[doc_id] = status_obj
else:
# If status_obj is None, the document ID was not found in storage
not_found_ids.append(doc_id)
# Log a warning if any of the requested document IDs were not found
if not_found_ids:
logger.warning(
f"Document statuses not found for the following IDs: {not_found_ids}"
)
# Return the dictionary containing statuses only for the found document IDs
return found_statuses
async def adelete_by_doc_id(self, doc_id: str) -> DeletionResult:
"""Delete a document and all its related data, including chunks, graph elements, and cached entries.
This method orchestrates a comprehensive deletion process for a given document ID.
It ensures that not only the document itself but also all its derived and associated
data across different storage layers are removed. If entities or relationships are partially affected, it triggers.
Args:
doc_id (str): The unique identifier of the document to be deleted.
Returns:
DeletionResult: An object containing the outcome of the deletion process.
- `status` (str): "success", "not_found", or "failure".
- `doc_id` (str): The ID of the document attempted to be deleted.
- `message` (str): A summary of the operation's result.
- `status_code` (int): HTTP status code (e.g., 200, 404, 500).
- `file_path` (str | None): The file path of the deleted document, if available.
"""
deletion_operations_started = False
original_exception = None
# Get pipeline status shared data and lock for status updates
pipeline_status = await get_namespace_data("pipeline_status")
pipeline_status_lock = get_pipeline_status_lock()
async with pipeline_status_lock:
log_message = f"Starting deletion process for document {doc_id}"
logger.info(log_message)
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
try:
# 1. Get the document status and related data
doc_status_data = await self.doc_status.get_by_id(doc_id)
file_path = doc_status_data.get("file_path") if doc_status_data else None
if not doc_status_data:
logger.warning(f"Document {doc_id} not found")
return DeletionResult(
status="not_found",
doc_id=doc_id,
message=f"Document {doc_id} not found.",
status_code=404,
file_path="",
)
# 2. Get all chunks related to this document
try:
all_chunks = await self.text_chunks.get_all()
related_chunks = {
chunk_id: chunk_data
for chunk_id, chunk_data in all_chunks.items()
if isinstance(chunk_data, dict)
and chunk_data.get("full_doc_id") == doc_id
}
# Update pipeline status after getting chunks count
async with pipeline_status_lock:
log_message = f"Retrieved {len(related_chunks)} of {len(all_chunks)} related chunks"
logger.info(log_message)
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
except Exception as e:
logger.error(f"Failed to retrieve chunks for document {doc_id}: {e}")
raise Exception(f"Failed to retrieve document chunks: {e}") from e
if not related_chunks:
logger.warning(f"No chunks found for document {doc_id}")
# Mark that deletion operations have started
deletion_operations_started = True
try:
# Still need to delete the doc status and full doc
await self.full_docs.delete([doc_id])
await self.doc_status.delete([doc_id])
logger.info(f"Deleted document {doc_id} with no associated chunks")
except Exception as e:
logger.error(
f"Failed to delete document {doc_id} with no chunks: {e}"
)
raise Exception(f"Failed to delete document entry: {e}") from e
async with pipeline_status_lock:
log_message = (
f"Document {doc_id} is deleted without associated chunks."
)
logger.info(log_message)
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
return DeletionResult(
status="success",
doc_id=doc_id,
message=log_message,
status_code=200,
file_path=file_path,
)
chunk_ids = set(related_chunks.keys())
# Mark that deletion operations have started
deletion_operations_started = True
# 4. Analyze entities and relationships that will be affected
entities_to_delete = set()
entities_to_rebuild = {} # entity_name -> remaining_chunk_ids
relationships_to_delete = set()
relationships_to_rebuild = {} # (src, tgt) -> remaining_chunk_ids
# Use graph database lock to ensure atomic merges and updates
graph_db_lock = get_graph_db_lock(enable_logging=False)
async with graph_db_lock:
try:
# Get all affected nodes and edges in batch
# logger.info(
# f"Analyzing affected entities and relationships for {len(chunk_ids)} chunks"
# )
affected_nodes = (
await self.chunk_entity_relation_graph.get_nodes_by_chunk_ids(
list(chunk_ids)
)
)
# Update pipeline status after getting affected_nodes
async with pipeline_status_lock:
log_message = f"Found {len(affected_nodes)} affected entities"
logger.info(log_message)
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
affected_edges = (
await self.chunk_entity_relation_graph.get_edges_by_chunk_ids(
list(chunk_ids)
)
)
# Update pipeline status after getting affected_edges
async with pipeline_status_lock:
log_message = f"Found {len(affected_edges)} affected relations"
logger.info(log_message)
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
except Exception as e:
logger.error(f"Failed to analyze affected graph elements: {e}")
raise Exception(f"Failed to analyze graph dependencies: {e}") from e
try:
# Process entities
for node_data in affected_nodes:
node_label = node_data.get("entity_id")
if node_label and "source_id" in node_data:
sources = set(node_data["source_id"].split(GRAPH_FIELD_SEP))
remaining_sources = sources - chunk_ids
if not remaining_sources:
entities_to_delete.add(node_label)
elif remaining_sources != sources:
entities_to_rebuild[node_label] = remaining_sources
# Process relationships
for edge_data in affected_edges:
src = edge_data.get("source")
tgt = edge_data.get("target")
if src and tgt and "source_id" in edge_data:
edge_tuple = tuple(sorted((src, tgt)))
if (
edge_tuple in relationships_to_delete
or edge_tuple in relationships_to_rebuild
):
continue
sources = set(edge_data["source_id"].split(GRAPH_FIELD_SEP))
remaining_sources = sources - chunk_ids
if not remaining_sources:
relationships_to_delete.add(edge_tuple)
elif remaining_sources != sources:
relationships_to_rebuild[edge_tuple] = remaining_sources
except Exception as e:
logger.error(f"Failed to process graph analysis results: {e}")
raise Exception(f"Failed to process graph dependencies: {e}") from e
# 5. Delete chunks from storage
if chunk_ids:
try:
await self.chunks_vdb.delete(chunk_ids)
await self.text_chunks.delete(chunk_ids)
async with pipeline_status_lock:
log_message = f"Successfully deleted {len(chunk_ids)} chunks from storage"
logger.info(log_message)
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
except Exception as e:
logger.error(f"Failed to delete chunks: {e}")
raise Exception(f"Failed to delete document chunks: {e}") from e
# 6. Delete entities that have no remaining sources
if entities_to_delete:
try:
# Delete from vector database
entity_vdb_ids = [
compute_mdhash_id(entity, prefix="ent-")
for entity in entities_to_delete
]
await self.entities_vdb.delete(entity_vdb_ids)
# Delete from graph
await self.chunk_entity_relation_graph.remove_nodes(
list(entities_to_delete)
)
async with pipeline_status_lock:
log_message = f"Successfully deleted {len(entities_to_delete)} entities"
logger.info(log_message)
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
except Exception as e:
logger.error(f"Failed to delete entities: {e}")
raise Exception(f"Failed to delete entities: {e}") from e
# 7. Delete relationships that have no remaining sources
if relationships_to_delete:
try:
# Delete from vector database
rel_ids_to_delete = []
for src, tgt in relationships_to_delete:
rel_ids_to_delete.extend(
[
compute_mdhash_id(src + tgt, prefix="rel-"),
compute_mdhash_id(tgt + src, prefix="rel-"),
]
)
await self.relationships_vdb.delete(rel_ids_to_delete)
# Delete from graph
await self.chunk_entity_relation_graph.remove_edges(
list(relationships_to_delete)
)
async with pipeline_status_lock:
log_message = f"Successfully deleted {len(relationships_to_delete)} relations"
logger.info(log_message)
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
except Exception as e:
logger.error(f"Failed to delete relationships: {e}")
raise Exception(f"Failed to delete relationships: {e}") from e
# 8. Rebuild entities and relationships from remaining chunks
if entities_to_rebuild or relationships_to_rebuild:
try:
await _rebuild_knowledge_from_chunks(
entities_to_rebuild=entities_to_rebuild,
relationships_to_rebuild=relationships_to_rebuild,
knowledge_graph_inst=self.chunk_entity_relation_graph,
entities_vdb=self.entities_vdb,
relationships_vdb=self.relationships_vdb,
text_chunks=self.text_chunks,
llm_response_cache=self.llm_response_cache,
global_config=asdict(self),
)
async with pipeline_status_lock:
log_message = f"Successfully rebuilt {len(entities_to_rebuild)} entities and {len(relationships_to_rebuild)} relations"
logger.info(log_message)
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
except Exception as e:
logger.error(f"Failed to rebuild knowledge from chunks: {e}")
raise Exception(
f"Failed to rebuild knowledge graph: {e}"
) from e
# 9. Delete original document and status
try:
await self.full_docs.delete([doc_id])
await self.doc_status.delete([doc_id])
except Exception as e:
logger.error(f"Failed to delete document and status: {e}")
raise Exception(f"Failed to delete document and status: {e}") from e
return DeletionResult(
status="success",
doc_id=doc_id,
message=log_message,
status_code=200,
file_path=file_path,
)
except Exception as e:
original_exception = e
error_message = f"Error while deleting document {doc_id}: {e}"
logger.error(error_message)
logger.error(traceback.format_exc())
return DeletionResult(
status="fail",
doc_id=doc_id,
message=error_message,
status_code=500,
file_path=file_path,
)
finally:
# ALWAYS ensure persistence if any deletion operations were started
if deletion_operations_started:
try:
await self._insert_done()
except Exception as persistence_error:
persistence_error_msg = f"Failed to persist data after deletion attempt for {doc_id}: {persistence_error}"
logger.error(persistence_error_msg)
logger.error(traceback.format_exc())
# If there was no original exception, this persistence error becomes the main error
if original_exception is None:
return DeletionResult(
status="fail",
doc_id=doc_id,
message=f"Deletion completed but failed to persist changes: {persistence_error}",
status_code=500,
file_path=file_path,
)
# If there was an original exception, log the persistence error but don't override the original error
# The original error result was already returned in the except block
else:
logger.debug(
f"No deletion operations were started for document {doc_id}, skipping persistence"
)
async def adelete_by_entity(self, entity_name: str) -> DeletionResult:
"""Asynchronously delete an entity and all its relationships.
Args:
entity_name: Name of the entity to delete.
Returns:
DeletionResult: An object containing the outcome of the deletion process.
"""
from .utils_graph import adelete_by_entity
return await adelete_by_entity(
self.chunk_entity_relation_graph,
self.entities_vdb,
self.relationships_vdb,
entity_name,
)
def delete_by_entity(self, entity_name: str) -> DeletionResult:
"""Synchronously delete an entity and all its relationships.
Args:
entity_name: Name of the entity to delete.
Returns:
DeletionResult: An object containing the outcome of the deletion process.
"""
loop = always_get_an_event_loop()
return loop.run_until_complete(self.adelete_by_entity(entity_name))
async def adelete_by_relation(
self, source_entity: str, target_entity: str
) -> DeletionResult:
"""Asynchronously delete a relation between two entities.
Args:
source_entity: Name of the source entity.
target_entity: Name of the target entity.
Returns:
DeletionResult: An object containing the outcome of the deletion process.
"""
from .utils_graph import adelete_by_relation
return await adelete_by_relation(
self.chunk_entity_relation_graph,
self.relationships_vdb,
source_entity,
target_entity,
)
def delete_by_relation(
self, source_entity: str, target_entity: str
) -> DeletionResult:
"""Synchronously delete a relation between two entities.
Args:
source_entity: Name of the source entity.
target_entity: Name of the target entity.
Returns:
DeletionResult: An object containing the outcome of the deletion process.
"""
loop = always_get_an_event_loop()
return loop.run_until_complete(
self.adelete_by_relation(source_entity, target_entity)
)
async def get_processing_status(self) -> dict[str, int]:
"""Get current document processing status counts
Returns:
Dict with counts for each status
"""
return await self.doc_status.get_status_counts()
async def get_entity_info(
self, entity_name: str, include_vector_data: bool = False
) -> dict[str, str | None | dict[str, str]]:
"""Get detailed information of an entity"""
from .utils_graph import get_entity_info
return await get_entity_info(
self.chunk_entity_relation_graph,
self.entities_vdb,
entity_name,
include_vector_data,
)
async def get_relation_info(
self, src_entity: str, tgt_entity: str, include_vector_data: bool = False
) -> dict[str, str | None | dict[str, str]]:
"""Get detailed information of a relationship"""
from .utils_graph import get_relation_info
return await get_relation_info(
self.chunk_entity_relation_graph,
self.relationships_vdb,
src_entity,
tgt_entity,
include_vector_data,
)
async def aedit_entity(
self, entity_name: str, updated_data: dict[str, str], allow_rename: bool = True
) -> dict[str, Any]:
"""Asynchronously edit entity information.
Updates entity information in the knowledge graph and re-embeds the entity in the vector database.
Args:
entity_name: Name of the entity to edit
updated_data: Dictionary containing updated attributes, e.g. {"description": "new description", "entity_type": "new type"}
allow_rename: Whether to allow entity renaming, defaults to True
Returns:
Dictionary containing updated entity information
"""
from .utils_graph import aedit_entity
return await aedit_entity(
self.chunk_entity_relation_graph,
self.entities_vdb,
self.relationships_vdb,
entity_name,
updated_data,
allow_rename,
)
def edit_entity(
self, entity_name: str, updated_data: dict[str, str], allow_rename: bool = True
) -> dict[str, Any]:
loop = always_get_an_event_loop()
return loop.run_until_complete(
self.aedit_entity(entity_name, updated_data, allow_rename)
)
async def aedit_relation(
self, source_entity: str, target_entity: str, updated_data: dict[str, Any]
) -> dict[str, Any]:
"""Asynchronously edit relation information.
Updates relation (edge) information in the knowledge graph and re-embeds the relation in the vector database.
Args:
source_entity: Name of the source entity
target_entity: Name of the target entity
updated_data: Dictionary containing updated attributes, e.g. {"description": "new description", "keywords": "new keywords"}
Returns:
Dictionary containing updated relation information
"""
from .utils_graph import aedit_relation
return await aedit_relation(
self.chunk_entity_relation_graph,
self.entities_vdb,
self.relationships_vdb,
source_entity,
target_entity,
updated_data,
)
def edit_relation(
self, source_entity: str, target_entity: str, updated_data: dict[str, Any]
) -> dict[str, Any]:
loop = always_get_an_event_loop()
return loop.run_until_complete(
self.aedit_relation(source_entity, target_entity, updated_data)
)
async def acreate_entity(
self, entity_name: str, entity_data: dict[str, Any]
) -> dict[str, Any]:
"""Asynchronously create a new entity.
Creates a new entity in the knowledge graph and adds it to the vector database.
Args:
entity_name: Name of the new entity
entity_data: Dictionary containing entity attributes, e.g. {"description": "description", "entity_type": "type"}
Returns:
Dictionary containing created entity information
"""
from .utils_graph import acreate_entity
return await acreate_entity(
self.chunk_entity_relation_graph,
self.entities_vdb,
self.relationships_vdb,
entity_name,
entity_data,
)
def create_entity(
self, entity_name: str, entity_data: dict[str, Any]
) -> dict[str, Any]:
loop = always_get_an_event_loop()
return loop.run_until_complete(self.acreate_entity(entity_name, entity_data))
async def acreate_relation(
self, source_entity: str, target_entity: str, relation_data: dict[str, Any]
) -> dict[str, Any]:
"""Asynchronously create a new relation between entities.
Creates a new relation (edge) in the knowledge graph and adds it to the vector database.
Args:
source_entity: Name of the source entity
target_entity: Name of the target entity
relation_data: Dictionary containing relation attributes, e.g. {"description": "description", "keywords": "keywords"}
Returns:
Dictionary containing created relation information
"""
from .utils_graph import acreate_relation
return await acreate_relation(
self.chunk_entity_relation_graph,
self.entities_vdb,
self.relationships_vdb,
source_entity,
target_entity,
relation_data,
)
def create_relation(
self, source_entity: str, target_entity: str, relation_data: dict[str, Any]
) -> dict[str, Any]:
loop = always_get_an_event_loop()
return loop.run_until_complete(
self.acreate_relation(source_entity, target_entity, relation_data)
)
async def amerge_entities(
self,
source_entities: list[str],
target_entity: str,
merge_strategy: dict[str, str] = None,
target_entity_data: dict[str, Any] = None,
) -> dict[str, Any]:
"""Asynchronously merge multiple entities into one entity.
Merges multiple source entities into a target entity, handling all relationships,
and updating both the knowledge graph and vector database.
Args:
source_entities: List of source entity names to merge
target_entity: Name of the target entity after merging
merge_strategy: Merge strategy configuration, e.g. {"description": "concatenate", "entity_type": "keep_first"}
Supported strategies:
- "concatenate": Concatenate all values (for text fields)
- "keep_first": Keep the first non-empty value
- "keep_last": Keep the last non-empty value
- "join_unique": Join all unique values (for fields separated by delimiter)
target_entity_data: Dictionary of specific values to set for the target entity,
overriding any merged values, e.g. {"description": "custom description", "entity_type": "PERSON"}
Returns:
Dictionary containing the merged entity information
"""
from .utils_graph import amerge_entities
return await amerge_entities(
self.chunk_entity_relation_graph,
self.entities_vdb,
self.relationships_vdb,
source_entities,
target_entity,
merge_strategy,
target_entity_data,
)
def merge_entities(
self,
source_entities: list[str],
target_entity: str,
merge_strategy: dict[str, str] = None,
target_entity_data: dict[str, Any] = None,
) -> dict[str, Any]:
loop = always_get_an_event_loop()
return loop.run_until_complete(
self.amerge_entities(
source_entities, target_entity, merge_strategy, target_entity_data
)
)
async def aexport_data(
self,
output_path: str,
file_format: Literal["csv", "excel", "md", "txt"] = "csv",
include_vector_data: bool = False,
) -> None:
"""
Asynchronously exports all entities, relations, and relationships to various formats.
Args:
output_path: The path to the output file (including extension).
file_format: Output format - "csv", "excel", "md", "txt".
- csv: Comma-separated values file
- excel: Microsoft Excel file with multiple sheets
- md: Markdown tables
- txt: Plain text formatted output
- table: Print formatted tables to console
include_vector_data: Whether to include data from the vector database.
"""
from .utils import aexport_data as utils_aexport_data
await utils_aexport_data(
self.chunk_entity_relation_graph,
self.entities_vdb,
self.relationships_vdb,
output_path,
file_format,
include_vector_data,
)
def export_data(
self,
output_path: str,
file_format: Literal["csv", "excel", "md", "txt"] = "csv",
include_vector_data: bool = False,
) -> None:
"""
Synchronously exports all entities, relations, and relationships to various formats.
Args:
output_path: The path to the output file (including extension).
file_format: Output format - "csv", "excel", "md", "txt".
- csv: Comma-separated values file
- excel: Microsoft Excel file with multiple sheets
- md: Markdown tables
- txt: Plain text formatted output
- table: Print formatted tables to console
include_vector_data: Whether to include data from the vector database.
"""
try:
loop = asyncio.get_event_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
loop.run_until_complete(
self.aexport_data(output_path, file_format, include_vector_data)
)