mirror of
https://github.com/HKUDS/LightRAG.git
synced 2025-06-26 22:00:19 +00:00
183 lines
5.7 KiB
Python
183 lines
5.7 KiB
Python
import copy
|
|
import os
|
|
import json
|
|
|
|
import pipmaster as pm # Pipmaster for dynamic library install
|
|
|
|
if not pm.is_installed("aioboto3"):
|
|
pm.install("aioboto3")
|
|
import aioboto3
|
|
import numpy as np
|
|
from tenacity import (
|
|
retry,
|
|
stop_after_attempt,
|
|
wait_exponential,
|
|
retry_if_exception_type,
|
|
)
|
|
|
|
from lightrag.utils import (
|
|
locate_json_string_body_from_string,
|
|
)
|
|
|
|
|
|
class BedrockError(Exception):
|
|
"""Generic error for issues related to Amazon Bedrock"""
|
|
|
|
|
|
@retry(
|
|
stop=stop_after_attempt(5),
|
|
wait=wait_exponential(multiplier=1, max=60),
|
|
retry=retry_if_exception_type((BedrockError)),
|
|
)
|
|
async def bedrock_complete_if_cache(
|
|
model,
|
|
prompt,
|
|
system_prompt=None,
|
|
history_messages=[],
|
|
aws_access_key_id=None,
|
|
aws_secret_access_key=None,
|
|
aws_session_token=None,
|
|
**kwargs,
|
|
) -> str:
|
|
os.environ["AWS_ACCESS_KEY_ID"] = os.environ.get(
|
|
"AWS_ACCESS_KEY_ID", aws_access_key_id
|
|
)
|
|
os.environ["AWS_SECRET_ACCESS_KEY"] = os.environ.get(
|
|
"AWS_SECRET_ACCESS_KEY", aws_secret_access_key
|
|
)
|
|
os.environ["AWS_SESSION_TOKEN"] = os.environ.get(
|
|
"AWS_SESSION_TOKEN", aws_session_token
|
|
)
|
|
kwargs.pop("hashing_kv", None)
|
|
# Fix message history format
|
|
messages = []
|
|
for history_message in history_messages:
|
|
message = copy.copy(history_message)
|
|
message["content"] = [{"text": message["content"]}]
|
|
messages.append(message)
|
|
|
|
# Add user prompt
|
|
messages.append({"role": "user", "content": [{"text": prompt}]})
|
|
|
|
# Initialize Converse API arguments
|
|
args = {"modelId": model, "messages": messages}
|
|
|
|
# Define system prompt
|
|
if system_prompt:
|
|
args["system"] = [{"text": system_prompt}]
|
|
|
|
# Map and set up inference parameters
|
|
inference_params_map = {
|
|
"max_tokens": "maxTokens",
|
|
"top_p": "topP",
|
|
"stop_sequences": "stopSequences",
|
|
}
|
|
if inference_params := list(
|
|
set(kwargs) & set(["max_tokens", "temperature", "top_p", "stop_sequences"])
|
|
):
|
|
args["inferenceConfig"] = {}
|
|
for param in inference_params:
|
|
args["inferenceConfig"][inference_params_map.get(param, param)] = (
|
|
kwargs.pop(param)
|
|
)
|
|
|
|
# Call model via Converse API
|
|
session = aioboto3.Session()
|
|
async with session.client("bedrock-runtime") as bedrock_async_client:
|
|
try:
|
|
response = await bedrock_async_client.converse(**args, **kwargs)
|
|
except Exception as e:
|
|
raise BedrockError(e)
|
|
|
|
return response["output"]["message"]["content"][0]["text"]
|
|
|
|
|
|
# Generic Bedrock completion function
|
|
async def bedrock_complete(
|
|
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
|
) -> str:
|
|
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
|
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
|
|
result = await bedrock_complete_if_cache(
|
|
model_name,
|
|
prompt,
|
|
system_prompt=system_prompt,
|
|
history_messages=history_messages,
|
|
**kwargs,
|
|
)
|
|
if keyword_extraction: # TODO: use JSON API
|
|
return locate_json_string_body_from_string(result)
|
|
return result
|
|
|
|
|
|
# @wrap_embedding_func_with_attrs(embedding_dim=1024, max_token_size=8192)
|
|
# @retry(
|
|
# stop=stop_after_attempt(3),
|
|
# wait=wait_exponential(multiplier=1, min=4, max=10),
|
|
# retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)), # TODO: fix exceptions
|
|
# )
|
|
async def bedrock_embed(
|
|
texts: list[str],
|
|
model: str = "amazon.titan-embed-text-v2:0",
|
|
aws_access_key_id=None,
|
|
aws_secret_access_key=None,
|
|
aws_session_token=None,
|
|
) -> np.ndarray:
|
|
os.environ["AWS_ACCESS_KEY_ID"] = os.environ.get(
|
|
"AWS_ACCESS_KEY_ID", aws_access_key_id
|
|
)
|
|
os.environ["AWS_SECRET_ACCESS_KEY"] = os.environ.get(
|
|
"AWS_SECRET_ACCESS_KEY", aws_secret_access_key
|
|
)
|
|
os.environ["AWS_SESSION_TOKEN"] = os.environ.get(
|
|
"AWS_SESSION_TOKEN", aws_session_token
|
|
)
|
|
|
|
session = aioboto3.Session()
|
|
async with session.client("bedrock-runtime") as bedrock_async_client:
|
|
if (model_provider := model.split(".")[0]) == "amazon":
|
|
embed_texts = []
|
|
for text in texts:
|
|
if "v2" in model:
|
|
body = json.dumps(
|
|
{
|
|
"inputText": text,
|
|
# 'dimensions': embedding_dim,
|
|
"embeddingTypes": ["float"],
|
|
}
|
|
)
|
|
elif "v1" in model:
|
|
body = json.dumps({"inputText": text})
|
|
else:
|
|
raise ValueError(f"Model {model} is not supported!")
|
|
|
|
response = await bedrock_async_client.invoke_model(
|
|
modelId=model,
|
|
body=body,
|
|
accept="application/json",
|
|
contentType="application/json",
|
|
)
|
|
|
|
response_body = await response.get("body").json()
|
|
|
|
embed_texts.append(response_body["embedding"])
|
|
elif model_provider == "cohere":
|
|
body = json.dumps(
|
|
{"texts": texts, "input_type": "search_document", "truncate": "NONE"}
|
|
)
|
|
|
|
response = await bedrock_async_client.invoke_model(
|
|
model=model,
|
|
body=body,
|
|
accept="application/json",
|
|
contentType="application/json",
|
|
)
|
|
|
|
response_body = json.loads(response.get("body").read())
|
|
|
|
embed_texts = response_body["embeddings"]
|
|
else:
|
|
raise ValueError(f"Model provider '{model_provider}' is not supported!")
|
|
|
|
return np.array(embed_texts)
|