mirror of
https://github.com/HKUDS/LightRAG.git
synced 2025-06-26 22:00:19 +00:00
172 lines
5.5 KiB
Python
172 lines
5.5 KiB
Python
import sys
|
|
|
|
if sys.version_info < (3, 9):
|
|
from typing import AsyncIterator
|
|
else:
|
|
from collections.abc import AsyncIterator
|
|
|
|
import pipmaster as pm # Pipmaster for dynamic library install
|
|
|
|
# install specific modules
|
|
if not pm.is_installed("ollama"):
|
|
pm.install("ollama")
|
|
|
|
import ollama
|
|
|
|
from tenacity import (
|
|
retry,
|
|
stop_after_attempt,
|
|
wait_exponential,
|
|
retry_if_exception_type,
|
|
)
|
|
from lightrag.exceptions import (
|
|
APIConnectionError,
|
|
RateLimitError,
|
|
APITimeoutError,
|
|
)
|
|
from lightrag.api import __api_version__
|
|
|
|
import numpy as np
|
|
from typing import Union
|
|
from lightrag.utils import logger
|
|
|
|
|
|
@retry(
|
|
stop=stop_after_attempt(3),
|
|
wait=wait_exponential(multiplier=1, min=4, max=10),
|
|
retry=retry_if_exception_type(
|
|
(RateLimitError, APIConnectionError, APITimeoutError)
|
|
),
|
|
)
|
|
async def _ollama_model_if_cache(
|
|
model,
|
|
prompt,
|
|
system_prompt=None,
|
|
history_messages=[],
|
|
**kwargs,
|
|
) -> Union[str, AsyncIterator[str]]:
|
|
stream = True if kwargs.get("stream") else False
|
|
|
|
kwargs.pop("max_tokens", None)
|
|
# kwargs.pop("response_format", None) # allow json
|
|
host = kwargs.pop("host", None)
|
|
timeout = kwargs.pop("timeout", None) or 600 # Default timeout 600s
|
|
kwargs.pop("hashing_kv", None)
|
|
api_key = kwargs.pop("api_key", None)
|
|
headers = {
|
|
"Content-Type": "application/json",
|
|
"User-Agent": f"LightRAG/{__api_version__}",
|
|
}
|
|
if api_key:
|
|
headers["Authorization"] = f"Bearer {api_key}"
|
|
|
|
ollama_client = ollama.AsyncClient(host=host, timeout=timeout, headers=headers)
|
|
|
|
try:
|
|
messages = []
|
|
if system_prompt:
|
|
messages.append({"role": "system", "content": system_prompt})
|
|
messages.extend(history_messages)
|
|
messages.append({"role": "user", "content": prompt})
|
|
|
|
response = await ollama_client.chat(model=model, messages=messages, **kwargs)
|
|
if stream:
|
|
"""cannot cache stream response and process reasoning"""
|
|
|
|
async def inner():
|
|
try:
|
|
async for chunk in response:
|
|
yield chunk["message"]["content"]
|
|
except Exception as e:
|
|
logger.error(f"Error in stream response: {str(e)}")
|
|
raise
|
|
finally:
|
|
try:
|
|
await ollama_client._client.aclose()
|
|
logger.debug("Successfully closed Ollama client for streaming")
|
|
except Exception as close_error:
|
|
logger.warning(f"Failed to close Ollama client: {close_error}")
|
|
|
|
return inner()
|
|
else:
|
|
model_response = response["message"]["content"]
|
|
|
|
"""
|
|
If the model also wraps its thoughts in a specific tag,
|
|
this information is not needed for the final
|
|
response and can simply be trimmed.
|
|
"""
|
|
|
|
return model_response
|
|
except Exception as e:
|
|
try:
|
|
await ollama_client._client.aclose()
|
|
logger.debug("Successfully closed Ollama client after exception")
|
|
except Exception as close_error:
|
|
logger.warning(
|
|
f"Failed to close Ollama client after exception: {close_error}"
|
|
)
|
|
raise e
|
|
finally:
|
|
if not stream:
|
|
try:
|
|
await ollama_client._client.aclose()
|
|
logger.debug(
|
|
"Successfully closed Ollama client for non-streaming response"
|
|
)
|
|
except Exception as close_error:
|
|
logger.warning(
|
|
f"Failed to close Ollama client in finally block: {close_error}"
|
|
)
|
|
|
|
|
|
async def ollama_model_complete(
|
|
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
|
) -> Union[str, AsyncIterator[str]]:
|
|
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
|
if keyword_extraction:
|
|
kwargs["format"] = "json"
|
|
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
|
|
return await _ollama_model_if_cache(
|
|
model_name,
|
|
prompt,
|
|
system_prompt=system_prompt,
|
|
history_messages=history_messages,
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
async def ollama_embed(texts: list[str], embed_model, **kwargs) -> np.ndarray:
|
|
api_key = kwargs.pop("api_key", None)
|
|
headers = {
|
|
"Content-Type": "application/json",
|
|
"User-Agent": f"LightRAG/{__api_version__}",
|
|
}
|
|
if api_key:
|
|
headers["Authorization"] = f"Bearer {api_key}"
|
|
|
|
host = kwargs.pop("host", None)
|
|
timeout = kwargs.pop("timeout", None) or 300 # Default time out 300s
|
|
|
|
ollama_client = ollama.AsyncClient(host=host, timeout=timeout, headers=headers)
|
|
|
|
try:
|
|
data = await ollama_client.embed(model=embed_model, input=texts)
|
|
return np.array(data["embeddings"])
|
|
except Exception as e:
|
|
logger.error(f"Error in ollama_embed: {str(e)}")
|
|
try:
|
|
await ollama_client._client.aclose()
|
|
logger.debug("Successfully closed Ollama client after exception in embed")
|
|
except Exception as close_error:
|
|
logger.warning(
|
|
f"Failed to close Ollama client after exception in embed: {close_error}"
|
|
)
|
|
raise e
|
|
finally:
|
|
try:
|
|
await ollama_client._client.aclose()
|
|
logger.debug("Successfully closed Ollama client after embed")
|
|
except Exception as close_error:
|
|
logger.warning(f"Failed to close Ollama client after embed: {close_error}")
|