mirror of
				https://github.com/HKUDS/LightRAG.git
				synced 2025-11-03 19:29:38 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			80 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			80 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import os
 | 
						|
import asyncio
 | 
						|
from lightrag import LightRAG, QueryParam
 | 
						|
from lightrag.llm import openai_complete_if_cache, openai_embedding
 | 
						|
from lightrag.utils import EmbeddingFunc
 | 
						|
import numpy as np
 | 
						|
 | 
						|
WORKING_DIR = "./dickens"
 | 
						|
 | 
						|
if not os.path.exists(WORKING_DIR):
 | 
						|
    os.mkdir(WORKING_DIR)
 | 
						|
 | 
						|
 | 
						|
async def llm_model_func(
 | 
						|
    prompt, system_prompt=None, history_messages=[], **kwargs
 | 
						|
) -> str:
 | 
						|
    return await openai_complete_if_cache(
 | 
						|
        "solar-mini",
 | 
						|
        prompt,
 | 
						|
        system_prompt=system_prompt,
 | 
						|
        history_messages=history_messages,
 | 
						|
        api_key=os.getenv("UPSTAGE_API_KEY"),
 | 
						|
        base_url="https://api.upstage.ai/v1/solar",
 | 
						|
        **kwargs,
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
async def embedding_func(texts: list[str]) -> np.ndarray:
 | 
						|
    return await openai_embedding(
 | 
						|
        texts,
 | 
						|
        model="solar-embedding-1-large-query",
 | 
						|
        api_key=os.getenv("UPSTAGE_API_KEY"),
 | 
						|
        base_url="https://api.upstage.ai/v1/solar",
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
# function test
 | 
						|
async def test_funcs():
 | 
						|
    result = await llm_model_func("How are you?")
 | 
						|
    print("llm_model_func: ", result)
 | 
						|
 | 
						|
    result = await embedding_func(["How are you?"])
 | 
						|
    print("embedding_func: ", result)
 | 
						|
 | 
						|
 | 
						|
asyncio.run(test_funcs())
 | 
						|
 | 
						|
 | 
						|
rag = LightRAG(
 | 
						|
    working_dir=WORKING_DIR,
 | 
						|
    llm_model_func=llm_model_func,
 | 
						|
    embedding_func=EmbeddingFunc(
 | 
						|
        embedding_dim=4096, max_token_size=8192, func=embedding_func
 | 
						|
    ),
 | 
						|
)
 | 
						|
 | 
						|
 | 
						|
with open("./book.txt") as f:
 | 
						|
    rag.insert(f.read())
 | 
						|
 | 
						|
# Perform naive search
 | 
						|
print(
 | 
						|
    rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
 | 
						|
)
 | 
						|
 | 
						|
# Perform local search
 | 
						|
print(
 | 
						|
    rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
 | 
						|
)
 | 
						|
 | 
						|
# Perform global search
 | 
						|
print(
 | 
						|
    rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
 | 
						|
)
 | 
						|
 | 
						|
# Perform hybrid search
 | 
						|
print(
 | 
						|
    rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
 | 
						|
)
 |