mirror of
https://github.com/HKUDS/LightRAG.git
synced 2025-12-04 19:06:51 +00:00
489 lines
17 KiB
Python
489 lines
17 KiB
Python
import asyncio
|
|
import os
|
|
from typing import Any, final, List
|
|
from dataclasses import dataclass
|
|
import numpy as np
|
|
import hashlib
|
|
import uuid
|
|
from ..utils import logger
|
|
from ..base import BaseVectorStorage
|
|
from ..kg.shared_storage import get_data_init_lock, get_storage_lock
|
|
import configparser
|
|
import pipmaster as pm
|
|
|
|
if not pm.is_installed("qdrant-client"):
|
|
pm.install("qdrant-client")
|
|
|
|
from qdrant_client import QdrantClient, models # type: ignore
|
|
|
|
config = configparser.ConfigParser()
|
|
config.read("config.ini", "utf-8")
|
|
|
|
|
|
def compute_mdhash_id_for_qdrant(
|
|
content: str, prefix: str = "", style: str = "simple"
|
|
) -> str:
|
|
"""
|
|
Generate a UUID based on the content and support multiple formats.
|
|
|
|
:param content: The content used to generate the UUID.
|
|
:param style: The format of the UUID, optional values are "simple", "hyphenated", "urn".
|
|
:return: A UUID that meets the requirements of Qdrant.
|
|
"""
|
|
if not content:
|
|
raise ValueError("Content must not be empty.")
|
|
|
|
# Use the hash value of the content to create a UUID.
|
|
hashed_content = hashlib.sha256((prefix + content).encode("utf-8")).digest()
|
|
generated_uuid = uuid.UUID(bytes=hashed_content[:16], version=4)
|
|
|
|
# Return the UUID according to the specified format.
|
|
if style == "simple":
|
|
return generated_uuid.hex
|
|
elif style == "hyphenated":
|
|
return str(generated_uuid)
|
|
elif style == "urn":
|
|
return f"urn:uuid:{generated_uuid}"
|
|
else:
|
|
raise ValueError("Invalid style. Choose from 'simple', 'hyphenated', or 'urn'.")
|
|
|
|
|
|
@final
|
|
@dataclass
|
|
class QdrantVectorDBStorage(BaseVectorStorage):
|
|
def __init__(
|
|
self, namespace, global_config, embedding_func, workspace=None, meta_fields=None
|
|
):
|
|
super().__init__(
|
|
namespace=namespace,
|
|
workspace=workspace or "",
|
|
global_config=global_config,
|
|
embedding_func=embedding_func,
|
|
meta_fields=meta_fields or set(),
|
|
)
|
|
self.__post_init__()
|
|
|
|
@staticmethod
|
|
def create_collection_if_not_exist(
|
|
client: QdrantClient, collection_name: str, **kwargs
|
|
):
|
|
if client.collection_exists(collection_name):
|
|
return
|
|
client.create_collection(collection_name, **kwargs)
|
|
|
|
def __post_init__(self):
|
|
# Check for QDRANT_WORKSPACE environment variable first (higher priority)
|
|
# This allows administrators to force a specific workspace for all Qdrant storage instances
|
|
qdrant_workspace = os.environ.get("QDRANT_WORKSPACE")
|
|
if qdrant_workspace and qdrant_workspace.strip():
|
|
# Use environment variable value, overriding the passed workspace parameter
|
|
effective_workspace = qdrant_workspace.strip()
|
|
logger.info(
|
|
f"Using QDRANT_WORKSPACE environment variable: '{effective_workspace}' (overriding passed workspace: '{self.workspace}')"
|
|
)
|
|
else:
|
|
# Use the workspace parameter passed during initialization
|
|
effective_workspace = self.workspace
|
|
if effective_workspace:
|
|
logger.debug(
|
|
f"Using passed workspace parameter: '{effective_workspace}'"
|
|
)
|
|
|
|
# Build final_namespace with workspace prefix for data isolation
|
|
# Keep original namespace unchanged for type detection logic
|
|
if effective_workspace:
|
|
self.final_namespace = f"{effective_workspace}_{self.namespace}"
|
|
logger.debug(
|
|
f"Final namespace with workspace prefix: '{self.final_namespace}'"
|
|
)
|
|
else:
|
|
# When workspace is empty, final_namespace equals original namespace
|
|
self.final_namespace = self.namespace
|
|
self.workspace = "_"
|
|
logger.debug(f"Final namespace (no workspace): '{self.final_namespace}'")
|
|
|
|
kwargs = self.global_config.get("vector_db_storage_cls_kwargs", {})
|
|
cosine_threshold = kwargs.get("cosine_better_than_threshold")
|
|
if cosine_threshold is None:
|
|
raise ValueError(
|
|
"cosine_better_than_threshold must be specified in vector_db_storage_cls_kwargs"
|
|
)
|
|
self.cosine_better_than_threshold = cosine_threshold
|
|
|
|
# Initialize client as None - will be created in initialize() method
|
|
self._client = None
|
|
self._max_batch_size = self.global_config["embedding_batch_num"]
|
|
self._initialized = False
|
|
|
|
async def initialize(self):
|
|
"""Initialize Qdrant collection"""
|
|
async with get_data_init_lock():
|
|
if self._initialized:
|
|
return
|
|
|
|
try:
|
|
# Create QdrantClient if not already created
|
|
if self._client is None:
|
|
self._client = QdrantClient(
|
|
url=os.environ.get(
|
|
"QDRANT_URL", config.get("qdrant", "uri", fallback=None)
|
|
),
|
|
api_key=os.environ.get(
|
|
"QDRANT_API_KEY",
|
|
config.get("qdrant", "apikey", fallback=None),
|
|
),
|
|
)
|
|
logger.debug(
|
|
f"[{self.workspace}] QdrantClient created successfully"
|
|
)
|
|
|
|
# Create collection if not exists
|
|
QdrantVectorDBStorage.create_collection_if_not_exist(
|
|
self._client,
|
|
self.final_namespace,
|
|
vectors_config=models.VectorParams(
|
|
size=self.embedding_func.embedding_dim,
|
|
distance=models.Distance.COSINE,
|
|
),
|
|
)
|
|
self._initialized = True
|
|
logger.info(
|
|
f"[{self.workspace}] Qdrant collection '{self.namespace}' initialized successfully"
|
|
)
|
|
except Exception as e:
|
|
logger.error(
|
|
f"[{self.workspace}] Failed to initialize Qdrant collection '{self.namespace}': {e}"
|
|
)
|
|
raise
|
|
|
|
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
|
|
logger.debug(f"[{self.workspace}] Inserting {len(data)} to {self.namespace}")
|
|
if not data:
|
|
return
|
|
|
|
import time
|
|
|
|
current_time = int(time.time())
|
|
|
|
list_data = [
|
|
{
|
|
"id": k,
|
|
"created_at": current_time,
|
|
**{k1: v1 for k1, v1 in v.items() if k1 in self.meta_fields},
|
|
}
|
|
for k, v in data.items()
|
|
]
|
|
contents = [v["content"] for v in data.values()]
|
|
batches = [
|
|
contents[i : i + self._max_batch_size]
|
|
for i in range(0, len(contents), self._max_batch_size)
|
|
]
|
|
|
|
embedding_tasks = [self.embedding_func(batch) for batch in batches]
|
|
embeddings_list = await asyncio.gather(*embedding_tasks)
|
|
|
|
embeddings = np.concatenate(embeddings_list)
|
|
|
|
list_points = []
|
|
for i, d in enumerate(list_data):
|
|
list_points.append(
|
|
models.PointStruct(
|
|
id=compute_mdhash_id_for_qdrant(d["id"]),
|
|
vector=embeddings[i],
|
|
payload=d,
|
|
)
|
|
)
|
|
|
|
results = self._client.upsert(
|
|
collection_name=self.final_namespace, points=list_points, wait=True
|
|
)
|
|
return results
|
|
|
|
async def query(
|
|
self, query: str, top_k: int, query_embedding: list[float] = None
|
|
) -> list[dict[str, Any]]:
|
|
if query_embedding is not None:
|
|
embedding = query_embedding
|
|
else:
|
|
embedding_result = await self.embedding_func(
|
|
[query], _priority=5
|
|
) # higher priority for query
|
|
embedding = embedding_result[0]
|
|
|
|
results = self._client.search(
|
|
collection_name=self.final_namespace,
|
|
query_vector=embedding,
|
|
limit=top_k,
|
|
with_payload=True,
|
|
score_threshold=self.cosine_better_than_threshold,
|
|
)
|
|
|
|
# logger.debug(f"[{self.workspace}] query result: {results}")
|
|
|
|
return [
|
|
{
|
|
**dp.payload,
|
|
"distance": dp.score,
|
|
"created_at": dp.payload.get("created_at"),
|
|
}
|
|
for dp in results
|
|
]
|
|
|
|
async def index_done_callback(self) -> None:
|
|
# Qdrant handles persistence automatically
|
|
pass
|
|
|
|
async def delete(self, ids: List[str]) -> None:
|
|
"""Delete vectors with specified IDs
|
|
|
|
Args:
|
|
ids: List of vector IDs to be deleted
|
|
"""
|
|
try:
|
|
# Convert regular ids to Qdrant compatible ids
|
|
qdrant_ids = [compute_mdhash_id_for_qdrant(id) for id in ids]
|
|
# Delete points from the collection
|
|
self._client.delete(
|
|
collection_name=self.final_namespace,
|
|
points_selector=models.PointIdsList(
|
|
points=qdrant_ids,
|
|
),
|
|
wait=True,
|
|
)
|
|
logger.debug(
|
|
f"[{self.workspace}] Successfully deleted {len(ids)} vectors from {self.namespace}"
|
|
)
|
|
except Exception as e:
|
|
logger.error(
|
|
f"[{self.workspace}] Error while deleting vectors from {self.namespace}: {e}"
|
|
)
|
|
|
|
async def delete_entity(self, entity_name: str) -> None:
|
|
"""Delete an entity by name
|
|
|
|
Args:
|
|
entity_name: Name of the entity to delete
|
|
"""
|
|
try:
|
|
# Generate the entity ID
|
|
entity_id = compute_mdhash_id_for_qdrant(entity_name, prefix="ent-")
|
|
# logger.debug(
|
|
# f"[{self.workspace}] Attempting to delete entity {entity_name} with ID {entity_id}"
|
|
# )
|
|
|
|
# Delete the entity point from the collection
|
|
self._client.delete(
|
|
collection_name=self.final_namespace,
|
|
points_selector=models.PointIdsList(
|
|
points=[entity_id],
|
|
),
|
|
wait=True,
|
|
)
|
|
logger.debug(
|
|
f"[{self.workspace}] Successfully deleted entity {entity_name}"
|
|
)
|
|
except Exception as e:
|
|
logger.error(f"[{self.workspace}] Error deleting entity {entity_name}: {e}")
|
|
|
|
async def delete_entity_relation(self, entity_name: str) -> None:
|
|
"""Delete all relations associated with an entity
|
|
|
|
Args:
|
|
entity_name: Name of the entity whose relations should be deleted
|
|
"""
|
|
try:
|
|
# Find relations where the entity is either source or target
|
|
results = self._client.scroll(
|
|
collection_name=self.final_namespace,
|
|
scroll_filter=models.Filter(
|
|
should=[
|
|
models.FieldCondition(
|
|
key="src_id", match=models.MatchValue(value=entity_name)
|
|
),
|
|
models.FieldCondition(
|
|
key="tgt_id", match=models.MatchValue(value=entity_name)
|
|
),
|
|
]
|
|
),
|
|
with_payload=True,
|
|
limit=1000, # Adjust as needed for your use case
|
|
)
|
|
|
|
# Extract points that need to be deleted
|
|
relation_points = results[0]
|
|
ids_to_delete = [point.id for point in relation_points]
|
|
|
|
if ids_to_delete:
|
|
# Delete the relations
|
|
self._client.delete(
|
|
collection_name=self.final_namespace,
|
|
points_selector=models.PointIdsList(
|
|
points=ids_to_delete,
|
|
),
|
|
wait=True,
|
|
)
|
|
logger.debug(
|
|
f"[{self.workspace}] Deleted {len(ids_to_delete)} relations for {entity_name}"
|
|
)
|
|
else:
|
|
logger.debug(
|
|
f"[{self.workspace}] No relations found for entity {entity_name}"
|
|
)
|
|
except Exception as e:
|
|
logger.error(
|
|
f"[{self.workspace}] Error deleting relations for {entity_name}: {e}"
|
|
)
|
|
|
|
async def get_by_id(self, id: str) -> dict[str, Any] | None:
|
|
"""Get vector data by its ID
|
|
|
|
Args:
|
|
id: The unique identifier of the vector
|
|
|
|
Returns:
|
|
The vector data if found, or None if not found
|
|
"""
|
|
try:
|
|
# Convert to Qdrant compatible ID
|
|
qdrant_id = compute_mdhash_id_for_qdrant(id)
|
|
|
|
# Retrieve the point by ID
|
|
result = self._client.retrieve(
|
|
collection_name=self.final_namespace,
|
|
ids=[qdrant_id],
|
|
with_payload=True,
|
|
)
|
|
|
|
if not result:
|
|
return None
|
|
|
|
# Ensure the result contains created_at field
|
|
payload = result[0].payload
|
|
if "created_at" not in payload:
|
|
payload["created_at"] = None
|
|
|
|
return payload
|
|
except Exception as e:
|
|
logger.error(
|
|
f"[{self.workspace}] Error retrieving vector data for ID {id}: {e}"
|
|
)
|
|
return None
|
|
|
|
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
|
|
"""Get multiple vector data by their IDs
|
|
|
|
Args:
|
|
ids: List of unique identifiers
|
|
|
|
Returns:
|
|
List of vector data objects that were found
|
|
"""
|
|
if not ids:
|
|
return []
|
|
|
|
try:
|
|
# Convert to Qdrant compatible IDs
|
|
qdrant_ids = [compute_mdhash_id_for_qdrant(id) for id in ids]
|
|
|
|
# Retrieve the points by IDs
|
|
results = self._client.retrieve(
|
|
collection_name=self.final_namespace,
|
|
ids=qdrant_ids,
|
|
with_payload=True,
|
|
)
|
|
|
|
# Ensure each result contains created_at field
|
|
payloads = []
|
|
for point in results:
|
|
payload = point.payload
|
|
if "created_at" not in payload:
|
|
payload["created_at"] = None
|
|
payloads.append(payload)
|
|
|
|
return payloads
|
|
except Exception as e:
|
|
logger.error(
|
|
f"[{self.workspace}] Error retrieving vector data for IDs {ids}: {e}"
|
|
)
|
|
return []
|
|
|
|
async def get_vectors_by_ids(self, ids: list[str]) -> dict[str, list[float]]:
|
|
"""Get vectors by their IDs, returning only ID and vector data for efficiency
|
|
|
|
Args:
|
|
ids: List of unique identifiers
|
|
|
|
Returns:
|
|
Dictionary mapping IDs to their vector embeddings
|
|
Format: {id: [vector_values], ...}
|
|
"""
|
|
if not ids:
|
|
return {}
|
|
|
|
try:
|
|
# Convert to Qdrant compatible IDs
|
|
qdrant_ids = [compute_mdhash_id_for_qdrant(id) for id in ids]
|
|
|
|
# Retrieve the points by IDs with vectors
|
|
results = self._client.retrieve(
|
|
collection_name=self.final_namespace,
|
|
ids=qdrant_ids,
|
|
with_vectors=True, # Important: request vectors
|
|
with_payload=True,
|
|
)
|
|
|
|
vectors_dict = {}
|
|
for point in results:
|
|
if point and point.vector is not None and point.payload:
|
|
# Get original ID from payload
|
|
original_id = point.payload.get("id")
|
|
if original_id:
|
|
# Convert numpy array to list if needed
|
|
vector_data = point.vector
|
|
if isinstance(vector_data, np.ndarray):
|
|
vector_data = vector_data.tolist()
|
|
vectors_dict[original_id] = vector_data
|
|
|
|
return vectors_dict
|
|
except Exception as e:
|
|
logger.error(
|
|
f"[{self.workspace}] Error retrieving vectors by IDs from {self.namespace}: {e}"
|
|
)
|
|
return {}
|
|
|
|
async def drop(self) -> dict[str, str]:
|
|
"""Drop all vector data from storage and clean up resources
|
|
|
|
This method will delete all data from the Qdrant collection.
|
|
|
|
Returns:
|
|
dict[str, str]: Operation status and message
|
|
- On success: {"status": "success", "message": "data dropped"}
|
|
- On failure: {"status": "error", "message": "<error details>"}
|
|
"""
|
|
async with get_storage_lock():
|
|
try:
|
|
# Delete the collection and recreate it
|
|
if self._client.collection_exists(self.final_namespace):
|
|
self._client.delete_collection(self.final_namespace)
|
|
|
|
# Recreate the collection
|
|
QdrantVectorDBStorage.create_collection_if_not_exist(
|
|
self._client,
|
|
self.final_namespace,
|
|
vectors_config=models.VectorParams(
|
|
size=self.embedding_func.embedding_dim,
|
|
distance=models.Distance.COSINE,
|
|
),
|
|
)
|
|
|
|
logger.info(
|
|
f"[{self.workspace}] Process {os.getpid()} drop Qdrant collection {self.namespace}"
|
|
)
|
|
return {"status": "success", "message": "data dropped"}
|
|
except Exception as e:
|
|
logger.error(
|
|
f"[{self.workspace}] Error dropping Qdrant collection {self.namespace}: {e}"
|
|
)
|
|
return {"status": "error", "message": str(e)}
|