mirror of
				https://github.com/HKUDS/LightRAG.git
				synced 2025-11-03 19:29:38 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			143 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			143 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import os
 | 
						|
from lightrag import LightRAG, QueryParam
 | 
						|
from lightrag.llm.llama_index_impl import (
 | 
						|
    llama_index_complete_if_cache,
 | 
						|
    llama_index_embed,
 | 
						|
)
 | 
						|
from lightrag.utils import EmbeddingFunc
 | 
						|
from llama_index.llms.openai import OpenAI
 | 
						|
from llama_index.embeddings.openai import OpenAIEmbedding
 | 
						|
import asyncio
 | 
						|
import nest_asyncio
 | 
						|
 | 
						|
nest_asyncio.apply()
 | 
						|
 | 
						|
from lightrag.kg.shared_storage import initialize_pipeline_status
 | 
						|
 | 
						|
# Configure working directory
 | 
						|
WORKING_DIR = "./index_default"
 | 
						|
print(f"WORKING_DIR: {WORKING_DIR}")
 | 
						|
 | 
						|
# Model configuration
 | 
						|
LLM_MODEL = os.environ.get("LLM_MODEL", "gpt-4")
 | 
						|
print(f"LLM_MODEL: {LLM_MODEL}")
 | 
						|
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "text-embedding-3-large")
 | 
						|
print(f"EMBEDDING_MODEL: {EMBEDDING_MODEL}")
 | 
						|
EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192))
 | 
						|
print(f"EMBEDDING_MAX_TOKEN_SIZE: {EMBEDDING_MAX_TOKEN_SIZE}")
 | 
						|
 | 
						|
# OpenAI configuration
 | 
						|
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY", "your-api-key-here")
 | 
						|
 | 
						|
if not os.path.exists(WORKING_DIR):
 | 
						|
    print(f"Creating working directory: {WORKING_DIR}")
 | 
						|
    os.mkdir(WORKING_DIR)
 | 
						|
 | 
						|
 | 
						|
# Initialize LLM function
 | 
						|
async def llm_model_func(prompt, system_prompt=None, history_messages=[], **kwargs):
 | 
						|
    try:
 | 
						|
        # Initialize OpenAI if not in kwargs
 | 
						|
        if "llm_instance" not in kwargs:
 | 
						|
            llm_instance = OpenAI(
 | 
						|
                model=LLM_MODEL,
 | 
						|
                api_key=OPENAI_API_KEY,
 | 
						|
                temperature=0.7,
 | 
						|
            )
 | 
						|
            kwargs["llm_instance"] = llm_instance
 | 
						|
 | 
						|
        response = await llama_index_complete_if_cache(
 | 
						|
            kwargs["llm_instance"],
 | 
						|
            prompt,
 | 
						|
            system_prompt=system_prompt,
 | 
						|
            history_messages=history_messages,
 | 
						|
            **kwargs,
 | 
						|
        )
 | 
						|
        return response
 | 
						|
    except Exception as e:
 | 
						|
        print(f"LLM request failed: {str(e)}")
 | 
						|
        raise
 | 
						|
 | 
						|
 | 
						|
# Initialize embedding function
 | 
						|
async def embedding_func(texts):
 | 
						|
    try:
 | 
						|
        embed_model = OpenAIEmbedding(
 | 
						|
            model=EMBEDDING_MODEL,
 | 
						|
            api_key=OPENAI_API_KEY,
 | 
						|
        )
 | 
						|
        return await llama_index_embed(texts, embed_model=embed_model)
 | 
						|
    except Exception as e:
 | 
						|
        print(f"Embedding failed: {str(e)}")
 | 
						|
        raise
 | 
						|
 | 
						|
 | 
						|
# Get embedding dimension
 | 
						|
async def get_embedding_dim():
 | 
						|
    test_text = ["This is a test sentence."]
 | 
						|
    embedding = await embedding_func(test_text)
 | 
						|
    embedding_dim = embedding.shape[1]
 | 
						|
    print(f"embedding_dim={embedding_dim}")
 | 
						|
    return embedding_dim
 | 
						|
 | 
						|
 | 
						|
async def initialize_rag():
 | 
						|
    embedding_dimension = await get_embedding_dim()
 | 
						|
 | 
						|
    rag = LightRAG(
 | 
						|
        working_dir=WORKING_DIR,
 | 
						|
        llm_model_func=llm_model_func,
 | 
						|
        embedding_func=EmbeddingFunc(
 | 
						|
            embedding_dim=embedding_dimension,
 | 
						|
            max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
 | 
						|
            func=embedding_func,
 | 
						|
        ),
 | 
						|
    )
 | 
						|
 | 
						|
    await rag.initialize_storages()
 | 
						|
    await initialize_pipeline_status()
 | 
						|
 | 
						|
    return rag
 | 
						|
 | 
						|
 | 
						|
def main():
 | 
						|
    # Initialize RAG instance
 | 
						|
    rag = asyncio.run(initialize_rag())
 | 
						|
 | 
						|
    # Insert example text
 | 
						|
    with open("./book.txt", "r", encoding="utf-8") as f:
 | 
						|
        rag.insert(f.read())
 | 
						|
 | 
						|
    # Test different query modes
 | 
						|
    print("\nNaive Search:")
 | 
						|
    print(
 | 
						|
        rag.query(
 | 
						|
            "What are the top themes in this story?", param=QueryParam(mode="naive")
 | 
						|
        )
 | 
						|
    )
 | 
						|
 | 
						|
    print("\nLocal Search:")
 | 
						|
    print(
 | 
						|
        rag.query(
 | 
						|
            "What are the top themes in this story?", param=QueryParam(mode="local")
 | 
						|
        )
 | 
						|
    )
 | 
						|
 | 
						|
    print("\nGlobal Search:")
 | 
						|
    print(
 | 
						|
        rag.query(
 | 
						|
            "What are the top themes in this story?", param=QueryParam(mode="global")
 | 
						|
        )
 | 
						|
    )
 | 
						|
 | 
						|
    print("\nHybrid Search:")
 | 
						|
    print(
 | 
						|
        rag.query(
 | 
						|
            "What are the top themes in this story?", param=QueryParam(mode="hybrid")
 | 
						|
        )
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    main()
 |