LightRAG/examples/unofficial-sample/lightrag_cloudflare_demo.py
2025-07-14 00:28:45 +06:00

358 lines
11 KiB
Python

import asyncio
import os
import inspect
import logging
import logging.config
from lightrag import LightRAG, QueryParam
from lightrag.utils import EmbeddingFunc, logger, set_verbose_debug
from lightrag.kg.shared_storage import initialize_pipeline_status
import requests
import numpy as np
from dotenv import load_dotenv
"""This code is a modified version of lightrag_openai_demo.py"""
# ideally, as always, env!
load_dotenv(dotenv_path=".env", override=False)
""" ----========= IMPORTANT CHANGE THIS! =========---- """
cloudflare_api_key = "YOUR_API_KEY"
account_id = "YOUR_ACCOUNT ID" # This is unique to your Cloudflare account
# Authomatically changes
api_base_url = f"https://api.cloudflare.com/client/v4/accounts/{account_id}/ai/run/"
# choose an embedding model
EMBEDDING_MODEL = "@cf/baai/bge-m3"
# choose a generative model
LLM_MODEL = "@cf/meta/llama-3.2-3b-instruct"
WORKING_DIR = "../dickens" # you can change output as desired
# Cloudflare init
class CloudflareWorker:
def __init__(
self,
cloudflare_api_key: str,
api_base_url: str,
llm_model_name: str,
embedding_model_name: str,
max_tokens: int = 4080,
max_response_tokens: int = 4080,
):
self.cloudflare_api_key = cloudflare_api_key
self.api_base_url = api_base_url
self.llm_model_name = llm_model_name
self.embedding_model_name = embedding_model_name
self.max_tokens = max_tokens
self.max_response_tokens = max_response_tokens
async def _send_request(self, model_name: str, input_: dict, debug_log: str):
headers = {"Authorization": f"Bearer {self.cloudflare_api_key}"}
print(f"""
data sent to Cloudflare
~~~~~~~~~~~
{debug_log}
""")
try:
response_raw = requests.post(
f"{self.api_base_url}{model_name}", headers=headers, json=input_
).json()
print(f"""
Cloudflare worker responded with:
~~~~~~~~~~~
{str(response_raw)}
""")
result = response_raw.get("result", {})
if "data" in result: # Embedding case
return np.array(result["data"])
if "response" in result: # LLM response
return result["response"]
raise ValueError("Unexpected Cloudflare response format")
except Exception as e:
print(f"""
Cloudflare API returned:
~~~~~~~~~
Error: {e}
""")
input("Press Enter to continue...")
return None
async def query(self, prompt, system_prompt: str = "", **kwargs) -> str:
# since no caching is used and we don't want to mess with everything lightrag, pop the kwarg it is
kwargs.pop("hashing_kv", None)
message = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt},
]
input_ = {
"messages": message,
"max_tokens": self.max_tokens,
"response_token_limit": self.max_response_tokens,
}
return await self._send_request(
self.llm_model_name,
input_,
debug_log=f"\n- model used {self.llm_model_name}\n- system prompt: {system_prompt}\n- query: {prompt}",
)
async def embedding_chunk(self, texts: list[str]) -> np.ndarray:
print(f"""
TEXT inputted
~~~~~
{texts}
""")
input_ = {
"text": texts,
"max_tokens": self.max_tokens,
"response_token_limit": self.max_response_tokens,
}
return await self._send_request(
self.embedding_model_name,
input_,
debug_log=f"\n-llm model name {self.embedding_model_name}\n- texts: {texts}",
)
def configure_logging():
"""Configure logging for the application"""
# Reset any existing handlers to ensure clean configuration
for logger_name in ["uvicorn", "uvicorn.access", "uvicorn.error", "lightrag"]:
logger_instance = logging.getLogger(logger_name)
logger_instance.handlers = []
logger_instance.filters = []
# Get log directory path from environment variable or use current directory
log_dir = os.getenv("LOG_DIR", os.getcwd())
log_file_path = os.path.abspath(
os.path.join(log_dir, "lightrag_cloudflare_worker_demo.log")
)
print(f"\nLightRAG compatible demo log file: {log_file_path}\n")
os.makedirs(os.path.dirname(log_file_path), exist_ok=True)
# Get log file max size and backup count from environment variables
log_max_bytes = int(os.getenv("LOG_MAX_BYTES", 10485760)) # Default 10MB
log_backup_count = int(os.getenv("LOG_BACKUP_COUNT", 5)) # Default 5 backups
logging.config.dictConfig(
{
"version": 1,
"disable_existing_loggers": False,
"formatters": {
"default": {
"format": "%(levelname)s: %(message)s",
},
"detailed": {
"format": "%(asctime)s - %(name)s - %(levelname)s - %(message)s",
},
},
"handlers": {
"console": {
"formatter": "default",
"class": "logging.StreamHandler",
"stream": "ext://sys.stderr",
},
"file": {
"formatter": "detailed",
"class": "logging.handlers.RotatingFileHandler",
"filename": log_file_path,
"maxBytes": log_max_bytes,
"backupCount": log_backup_count,
"encoding": "utf-8",
},
},
"loggers": {
"lightrag": {
"handlers": ["console", "file"],
"level": "INFO",
"propagate": False,
},
},
}
)
# Set the logger level to INFO
logger.setLevel(logging.INFO)
# Enable verbose debug if needed
set_verbose_debug(os.getenv("VERBOSE_DEBUG", "false").lower() == "true")
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
async def initialize_rag():
cloudflare_worker = CloudflareWorker(
cloudflare_api_key=cloudflare_api_key,
api_base_url=api_base_url,
embedding_model_name=EMBEDDING_MODEL,
llm_model_name=LLM_MODEL,
)
rag = LightRAG(
working_dir=WORKING_DIR,
max_parallel_insert=2,
llm_model_func=cloudflare_worker.query,
llm_model_name=os.getenv("LLM_MODEL", LLM_MODEL),
llm_model_max_token_size=4080,
embedding_func=EmbeddingFunc(
embedding_dim=int(os.getenv("EMBEDDING_DIM", "1024")),
max_token_size=int(os.getenv("MAX_EMBED_TOKENS", "2048")),
func=lambda texts: cloudflare_worker.embedding_chunk(
texts,
),
),
)
await rag.initialize_storages()
await initialize_pipeline_status()
return rag
async def print_stream(stream):
async for chunk in stream:
print(chunk, end="", flush=True)
async def main():
try:
# Clear old data files
files_to_delete = [
"graph_chunk_entity_relation.graphml",
"kv_store_doc_status.json",
"kv_store_full_docs.json",
"kv_store_text_chunks.json",
"vdb_chunks.json",
"vdb_entities.json",
"vdb_relationships.json",
]
for file in files_to_delete:
file_path = os.path.join(WORKING_DIR, file)
if os.path.exists(file_path):
os.remove(file_path)
print(f"Deleting old file:: {file_path}")
# Initialize RAG instance
rag = await initialize_rag()
# Test embedding function
test_text = ["This is a test string for embedding."]
embedding = await rag.embedding_func(test_text)
embedding_dim = embedding.shape[1]
print("\n=======================")
print("Test embedding function")
print("========================")
print(f"Test dict: {test_text}")
print(f"Detected embedding dimension: {embedding_dim}\n\n")
# Locate the location of what is needed to be added to the knowledge
# Can add several simultaneously by modifying code
with open("./book.txt", "r", encoding="utf-8") as f:
await rag.ainsert(f.read())
# Perform naive search
print("\n=====================")
print("Query mode: naive")
print("=====================")
resp = await rag.aquery(
"What are the top themes in this story?",
param=QueryParam(mode="naive", stream=True),
)
if inspect.isasyncgen(resp):
await print_stream(resp)
else:
print(resp)
# Perform local search
print("\n=====================")
print("Query mode: local")
print("=====================")
resp = await rag.aquery(
"What are the top themes in this story?",
param=QueryParam(mode="local", stream=True),
)
if inspect.isasyncgen(resp):
await print_stream(resp)
else:
print(resp)
# Perform global search
print("\n=====================")
print("Query mode: global")
print("=====================")
resp = await rag.aquery(
"What are the top themes in this story?",
param=QueryParam(mode="global", stream=True),
)
if inspect.isasyncgen(resp):
await print_stream(resp)
else:
print(resp)
# Perform hybrid search
print("\n=====================")
print("Query mode: hybrid")
print("=====================")
resp = await rag.aquery(
"What are the top themes in this story?",
param=QueryParam(mode="hybrid", stream=True),
)
if inspect.isasyncgen(resp):
await print_stream(resp)
else:
print(resp)
""" FOR TESTING (if you want to test straight away, after building. Uncomment this part"""
"""
print("\n" + "=" * 60)
print("AI ASSISTANT READY!")
print("Ask questions about (your uploaded) regulations")
print("Type 'quit' to exit")
print("=" * 60)
while True:
question = input("\n🔥 Your question: ")
if question.lower() in ['quit', 'exit', 'bye']:
break
print("\nThinking...")
response = await rag.aquery(question, param=QueryParam(mode="hybrid"))
print(f"\nAnswer: {response}")
"""
except Exception as e:
print(f"An error occurred: {e}")
finally:
if rag:
await rag.llm_response_cache.index_done_callback()
await rag.finalize_storages()
if __name__ == "__main__":
# Configure logging before running the main function
configure_logging()
asyncio.run(main())
print("\nDone!")