mirror of
				https://github.com/HKUDS/LightRAG.git
				synced 2025-10-30 17:29:34 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			71 lines
		
	
	
		
			1.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			71 lines
		
	
	
		
			1.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import asyncio
 | |
| import os
 | |
| import inspect
 | |
| import logging
 | |
| from lightrag import LightRAG, QueryParam
 | |
| from lightrag.llm import ollama_model_complete, ollama_embedding
 | |
| from lightrag.utils import EmbeddingFunc
 | |
| 
 | |
| WORKING_DIR = "./dickens"
 | |
| 
 | |
| logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.INFO)
 | |
| 
 | |
| if not os.path.exists(WORKING_DIR):
 | |
|     os.mkdir(WORKING_DIR)
 | |
| 
 | |
| rag = LightRAG(
 | |
|     working_dir=WORKING_DIR,
 | |
|     llm_model_func=ollama_model_complete,
 | |
|     llm_model_name="gemma2:2b",
 | |
|     llm_model_max_async=4,
 | |
|     llm_model_max_token_size=32768,
 | |
|     llm_model_kwargs={"host": "http://localhost:11434", "options": {"num_ctx": 32768}},
 | |
|     embedding_func=EmbeddingFunc(
 | |
|         embedding_dim=768,
 | |
|         max_token_size=8192,
 | |
|         func=lambda texts: ollama_embedding(
 | |
|             texts, embed_model="nomic-embed-text", host="http://localhost:11434"
 | |
|         ),
 | |
|     ),
 | |
| )
 | |
| 
 | |
| with open("./book.txt", "r", encoding="utf-8") as f:
 | |
|     rag.insert(f.read())
 | |
| 
 | |
| # Perform naive search
 | |
| print(
 | |
|     rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
 | |
| )
 | |
| 
 | |
| # Perform local search
 | |
| print(
 | |
|     rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
 | |
| )
 | |
| 
 | |
| # Perform global search
 | |
| print(
 | |
|     rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
 | |
| )
 | |
| 
 | |
| # Perform hybrid search
 | |
| print(
 | |
|     rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
 | |
| )
 | |
| 
 | |
| # stream response
 | |
| resp = rag.query(
 | |
|     "What are the top themes in this story?",
 | |
|     param=QueryParam(mode="hybrid", stream=True),
 | |
| )
 | |
| 
 | |
| 
 | |
| async def print_stream(stream):
 | |
|     async for chunk in stream:
 | |
|         print(chunk, end="", flush=True)
 | |
| 
 | |
| 
 | |
| if inspect.isasyncgen(resp):
 | |
|     asyncio.run(print_stream(resp))
 | |
| else:
 | |
|     print(resp)
 | 
