LightRAG/lightrag/kg/memgraph_impl.py

1080 lines
44 KiB
Python

import os
from dataclasses import dataclass
from typing import final
import configparser
from ..utils import logger
from ..base import BaseGraphStorage
from ..types import KnowledgeGraph, KnowledgeGraphNode, KnowledgeGraphEdge
from ..constants import GRAPH_FIELD_SEP
import pipmaster as pm
if not pm.is_installed("neo4j"):
pm.install("neo4j")
from neo4j import (
AsyncGraphDatabase,
AsyncManagedTransaction,
)
from dotenv import load_dotenv
# use the .env that is inside the current folder
load_dotenv(dotenv_path=".env", override=False)
MAX_GRAPH_NODES = int(os.getenv("MAX_GRAPH_NODES", 1000))
config = configparser.ConfigParser()
config.read("config.ini", "utf-8")
@final
@dataclass
class MemgraphStorage(BaseGraphStorage):
def __init__(self, namespace, global_config, embedding_func, workspace=None):
memgraph_workspace = os.environ.get("MEMGRAPH_WORKSPACE")
if memgraph_workspace and memgraph_workspace.strip():
workspace = memgraph_workspace
super().__init__(
namespace=namespace,
workspace=workspace or "",
global_config=global_config,
embedding_func=embedding_func,
)
self._driver = None
def _get_workspace_label(self) -> str:
"""Get workspace label, return 'base' for compatibility when workspace is empty"""
workspace = getattr(self, "workspace", None)
return workspace if workspace else "base"
async def initialize(self):
URI = os.environ.get(
"MEMGRAPH_URI",
config.get("memgraph", "uri", fallback="bolt://localhost:7687"),
)
USERNAME = os.environ.get(
"MEMGRAPH_USERNAME", config.get("memgraph", "username", fallback="")
)
PASSWORD = os.environ.get(
"MEMGRAPH_PASSWORD", config.get("memgraph", "password", fallback="")
)
DATABASE = os.environ.get(
"MEMGRAPH_DATABASE", config.get("memgraph", "database", fallback="memgraph")
)
self._driver = AsyncGraphDatabase.driver(
URI,
auth=(USERNAME, PASSWORD),
)
self._DATABASE = DATABASE
try:
async with self._driver.session(database=DATABASE) as session:
# Create index for base nodes on entity_id if it doesn't exist
try:
workspace_label = self._get_workspace_label()
await session.run(
f"""CREATE INDEX ON :{workspace_label}(entity_id)"""
)
logger.info(
f"Created index on :{workspace_label}(entity_id) in Memgraph."
)
except Exception as e:
# Index may already exist, which is not an error
logger.warning(
f"Index creation on :{workspace_label}(entity_id) may have failed or already exists: {e}"
)
await session.run("RETURN 1")
logger.info(f"Connected to Memgraph at {URI}")
except Exception as e:
logger.error(f"Failed to connect to Memgraph at {URI}: {e}")
raise
async def finalize(self):
if self._driver is not None:
await self._driver.close()
self._driver = None
async def __aexit__(self, exc_type, exc, tb):
await self.finalize()
async def index_done_callback(self):
# Memgraph handles persistence automatically
pass
async def has_node(self, node_id: str) -> bool:
"""
Check if a node exists in the graph.
Args:
node_id: The ID of the node to check.
Returns:
bool: True if the node exists, False otherwise.
Raises:
Exception: If there is an error checking the node existence.
"""
if self._driver is None:
raise RuntimeError(
"Memgraph driver is not initialized. Call 'await initialize()' first."
)
async with self._driver.session(
database=self._DATABASE, default_access_mode="READ"
) as session:
try:
workspace_label = self._get_workspace_label()
query = f"MATCH (n:`{workspace_label}` {{entity_id: $entity_id}}) RETURN count(n) > 0 AS node_exists"
result = await session.run(query, entity_id=node_id)
single_result = await result.single()
await result.consume() # Ensure result is fully consumed
return (
single_result["node_exists"] if single_result is not None else False
)
except Exception as e:
logger.error(f"Error checking node existence for {node_id}: {str(e)}")
await result.consume() # Ensure the result is consumed even on error
raise
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
"""
Check if an edge exists between two nodes in the graph.
Args:
source_node_id: The ID of the source node.
target_node_id: The ID of the target node.
Returns:
bool: True if the edge exists, False otherwise.
Raises:
Exception: If there is an error checking the edge existence.
"""
if self._driver is None:
raise RuntimeError(
"Memgraph driver is not initialized. Call 'await initialize()' first."
)
async with self._driver.session(
database=self._DATABASE, default_access_mode="READ"
) as session:
try:
workspace_label = self._get_workspace_label()
query = (
f"MATCH (a:`{workspace_label}` {{entity_id: $source_entity_id}})-[r]-(b:`{workspace_label}` {{entity_id: $target_entity_id}}) "
"RETURN COUNT(r) > 0 AS edgeExists"
)
result = await session.run(
query,
source_entity_id=source_node_id,
target_entity_id=target_node_id,
) # type: ignore
single_result = await result.single()
await result.consume() # Ensure result is fully consumed
return (
single_result["edgeExists"] if single_result is not None else False
)
except Exception as e:
logger.error(
f"Error checking edge existence between {source_node_id} and {target_node_id}: {str(e)}"
)
await result.consume() # Ensure the result is consumed even on error
raise
async def get_node(self, node_id: str) -> dict[str, str] | None:
"""Get node by its label identifier, return only node properties
Args:
node_id: The node label to look up
Returns:
dict: Node properties if found
None: If node not found
Raises:
Exception: If there is an error executing the query
"""
if self._driver is None:
raise RuntimeError(
"Memgraph driver is not initialized. Call 'await initialize()' first."
)
async with self._driver.session(
database=self._DATABASE, default_access_mode="READ"
) as session:
try:
workspace_label = self._get_workspace_label()
query = (
f"MATCH (n:`{workspace_label}` {{entity_id: $entity_id}}) RETURN n"
)
result = await session.run(query, entity_id=node_id)
try:
records = await result.fetch(
2
) # Get 2 records for duplication check
if len(records) > 1:
logger.warning(
f"Multiple nodes found with label '{node_id}'. Using first node."
)
if records:
node = records[0]["n"]
node_dict = dict(node)
# Remove workspace label from labels list if it exists
if "labels" in node_dict:
node_dict["labels"] = [
label
for label in node_dict["labels"]
if label != workspace_label
]
return node_dict
return None
finally:
await result.consume() # Ensure result is fully consumed
except Exception as e:
logger.error(f"Error getting node for {node_id}: {str(e)}")
raise
async def node_degree(self, node_id: str) -> int:
"""Get the degree (number of relationships) of a node with the given label.
If multiple nodes have the same label, returns the degree of the first node.
If no node is found, returns 0.
Args:
node_id: The label of the node
Returns:
int: The number of relationships the node has, or 0 if no node found
Raises:
Exception: If there is an error executing the query
"""
if self._driver is None:
raise RuntimeError(
"Memgraph driver is not initialized. Call 'await initialize()' first."
)
async with self._driver.session(
database=self._DATABASE, default_access_mode="READ"
) as session:
try:
workspace_label = self._get_workspace_label()
query = f"""
MATCH (n:`{workspace_label}` {{entity_id: $entity_id}})
OPTIONAL MATCH (n)-[r]-()
RETURN COUNT(r) AS degree
"""
result = await session.run(query, entity_id=node_id)
try:
record = await result.single()
if not record:
logger.warning(f"No node found with label '{node_id}'")
return 0
degree = record["degree"]
return degree
finally:
await result.consume() # Ensure result is fully consumed
except Exception as e:
logger.error(f"Error getting node degree for {node_id}: {str(e)}")
raise
async def get_all_labels(self) -> list[str]:
"""
Get all existing node labels in the database
Returns:
["Person", "Company", ...] # Alphabetically sorted label list
Raises:
Exception: If there is an error executing the query
"""
if self._driver is None:
raise RuntimeError(
"Memgraph driver is not initialized. Call 'await initialize()' first."
)
async with self._driver.session(
database=self._DATABASE, default_access_mode="READ"
) as session:
try:
workspace_label = self._get_workspace_label()
query = f"""
MATCH (n:`{workspace_label}`)
WHERE n.entity_id IS NOT NULL
RETURN DISTINCT n.entity_id AS label
ORDER BY label
"""
result = await session.run(query)
labels = []
async for record in result:
labels.append(record["label"])
await result.consume()
return labels
except Exception as e:
logger.error(f"Error getting all labels: {str(e)}")
await result.consume() # Ensure the result is consumed even on error
raise
async def get_node_edges(self, source_node_id: str) -> list[tuple[str, str]] | None:
"""Retrieves all edges (relationships) for a particular node identified by its label.
Args:
source_node_id: Label of the node to get edges for
Returns:
list[tuple[str, str]]: List of (source_label, target_label) tuples representing edges
None: If no edges found
Raises:
Exception: If there is an error executing the query
"""
if self._driver is None:
raise RuntimeError(
"Memgraph driver is not initialized. Call 'await initialize()' first."
)
try:
async with self._driver.session(
database=self._DATABASE, default_access_mode="READ"
) as session:
try:
workspace_label = self._get_workspace_label()
query = f"""MATCH (n:`{workspace_label}` {{entity_id: $entity_id}})
OPTIONAL MATCH (n)-[r]-(connected:`{workspace_label}`)
WHERE connected.entity_id IS NOT NULL
RETURN n, r, connected"""
results = await session.run(query, entity_id=source_node_id)
edges = []
async for record in results:
source_node = record["n"]
connected_node = record["connected"]
# Skip if either node is None
if not source_node or not connected_node:
continue
source_label = (
source_node.get("entity_id")
if source_node.get("entity_id")
else None
)
target_label = (
connected_node.get("entity_id")
if connected_node.get("entity_id")
else None
)
if source_label and target_label:
edges.append((source_label, target_label))
await results.consume() # Ensure results are consumed
return edges
except Exception as e:
logger.error(
f"Error getting edges for node {source_node_id}: {str(e)}"
)
await results.consume() # Ensure results are consumed even on error
raise
except Exception as e:
logger.error(f"Error in get_node_edges for {source_node_id}: {str(e)}")
raise
async def get_edge(
self, source_node_id: str, target_node_id: str
) -> dict[str, str] | None:
"""Get edge properties between two nodes.
Args:
source_node_id: Label of the source node
target_node_id: Label of the target node
Returns:
dict: Edge properties if found, default properties if not found or on error
Raises:
Exception: If there is an error executing the query
"""
if self._driver is None:
raise RuntimeError(
"Memgraph driver is not initialized. Call 'await initialize()' first."
)
async with self._driver.session(
database=self._DATABASE, default_access_mode="READ"
) as session:
try:
workspace_label = self._get_workspace_label()
query = f"""
MATCH (start:`{workspace_label}` {{entity_id: $source_entity_id}})-[r]-(end:`{workspace_label}` {{entity_id: $target_entity_id}})
RETURN properties(r) as edge_properties
"""
result = await session.run(
query,
source_entity_id=source_node_id,
target_entity_id=target_node_id,
)
records = await result.fetch(2)
await result.consume()
if records:
edge_result = dict(records[0]["edge_properties"])
for key, default_value in {
"weight": 0.0,
"source_id": None,
"description": None,
"keywords": None,
}.items():
if key not in edge_result:
edge_result[key] = default_value
logger.warning(
f"Edge between {source_node_id} and {target_node_id} is missing property: {key}. Using default value: {default_value}"
)
return edge_result
return None
except Exception as e:
logger.error(
f"Error getting edge between {source_node_id} and {target_node_id}: {str(e)}"
)
await result.consume() # Ensure the result is consumed even on error
raise
async def upsert_node(self, node_id: str, node_data: dict[str, str]) -> None:
"""
Upsert a node in the Memgraph database.
Args:
node_id: The unique identifier for the node (used as label)
node_data: Dictionary of node properties
"""
if self._driver is None:
raise RuntimeError(
"Memgraph driver is not initialized. Call 'await initialize()' first."
)
properties = node_data
entity_type = properties["entity_type"]
if "entity_id" not in properties:
raise ValueError(
"Memgraph: node properties must contain an 'entity_id' field"
)
try:
async with self._driver.session(database=self._DATABASE) as session:
workspace_label = self._get_workspace_label()
async def execute_upsert(tx: AsyncManagedTransaction):
query = f"""
MERGE (n:`{workspace_label}` {{entity_id: $entity_id}})
SET n += $properties
SET n:`{entity_type}`
"""
result = await tx.run(
query, entity_id=node_id, properties=properties
)
await result.consume() # Ensure result is fully consumed
await session.execute_write(execute_upsert)
except Exception as e:
logger.error(f"Error during upsert: {str(e)}")
raise
async def upsert_edge(
self, source_node_id: str, target_node_id: str, edge_data: dict[str, str]
) -> None:
"""
Upsert an edge and its properties between two nodes identified by their labels.
Ensures both source and target nodes exist and are unique before creating the edge.
Uses entity_id property to uniquely identify nodes.
Args:
source_node_id (str): Label of the source node (used as identifier)
target_node_id (str): Label of the target node (used as identifier)
edge_data (dict): Dictionary of properties to set on the edge
Raises:
Exception: If there is an error executing the query
"""
if self._driver is None:
raise RuntimeError(
"Memgraph driver is not initialized. Call 'await initialize()' first."
)
try:
edge_properties = edge_data
async with self._driver.session(database=self._DATABASE) as session:
async def execute_upsert(tx: AsyncManagedTransaction):
workspace_label = self._get_workspace_label()
query = f"""
MATCH (source:`{workspace_label}` {{entity_id: $source_entity_id}})
WITH source
MATCH (target:`{workspace_label}` {{entity_id: $target_entity_id}})
MERGE (source)-[r:DIRECTED]-(target)
SET r += $properties
RETURN r, source, target
"""
result = await tx.run(
query,
source_entity_id=source_node_id,
target_entity_id=target_node_id,
properties=edge_properties,
)
try:
await result.fetch(2)
finally:
await result.consume() # Ensure result is consumed
await session.execute_write(execute_upsert)
except Exception as e:
logger.error(f"Error during edge upsert: {str(e)}")
raise
async def delete_node(self, node_id: str) -> None:
"""Delete a node with the specified label
Args:
node_id: The label of the node to delete
Raises:
Exception: If there is an error executing the query
"""
if self._driver is None:
raise RuntimeError(
"Memgraph driver is not initialized. Call 'await initialize()' first."
)
async def _do_delete(tx: AsyncManagedTransaction):
workspace_label = self._get_workspace_label()
query = f"""
MATCH (n:`{workspace_label}` {{entity_id: $entity_id}})
DETACH DELETE n
"""
result = await tx.run(query, entity_id=node_id)
logger.debug(f"Deleted node with label {node_id}")
await result.consume()
try:
async with self._driver.session(database=self._DATABASE) as session:
await session.execute_write(_do_delete)
except Exception as e:
logger.error(f"Error during node deletion: {str(e)}")
raise
async def remove_nodes(self, nodes: list[str]):
"""Delete multiple nodes
Args:
nodes: List of node labels to be deleted
"""
if self._driver is None:
raise RuntimeError(
"Memgraph driver is not initialized. Call 'await initialize()' first."
)
for node in nodes:
await self.delete_node(node)
async def remove_edges(self, edges: list[tuple[str, str]]):
"""Delete multiple edges
Args:
edges: List of edges to be deleted, each edge is a (source, target) tuple
Raises:
Exception: If there is an error executing the query
"""
if self._driver is None:
raise RuntimeError(
"Memgraph driver is not initialized. Call 'await initialize()' first."
)
for source, target in edges:
async def _do_delete_edge(tx: AsyncManagedTransaction):
workspace_label = self._get_workspace_label()
query = f"""
MATCH (source:`{workspace_label}` {{entity_id: $source_entity_id}})-[r]-(target:`{workspace_label}` {{entity_id: $target_entity_id}})
DELETE r
"""
result = await tx.run(
query, source_entity_id=source, target_entity_id=target
)
logger.debug(f"Deleted edge from '{source}' to '{target}'")
await result.consume() # Ensure result is fully consumed
try:
async with self._driver.session(database=self._DATABASE) as session:
await session.execute_write(_do_delete_edge)
except Exception as e:
logger.error(f"Error during edge deletion: {str(e)}")
raise
async def drop(self) -> dict[str, str]:
"""Drop all data from the current workspace and clean up resources
This method will delete all nodes and relationships in the Memgraph database.
Returns:
dict[str, str]: Operation status and message
- On success: {"status": "success", "message": "data dropped"}
- On failure: {"status": "error", "message": "<error details>"}
Raises:
Exception: If there is an error executing the query
"""
if self._driver is None:
raise RuntimeError(
"Memgraph driver is not initialized. Call 'await initialize()' first."
)
try:
async with self._driver.session(database=self._DATABASE) as session:
workspace_label = self._get_workspace_label()
query = f"MATCH (n:`{workspace_label}`) DETACH DELETE n"
result = await session.run(query)
await result.consume()
logger.info(
f"Dropped workspace {workspace_label} from Memgraph database {self._DATABASE}"
)
return {"status": "success", "message": "workspace data dropped"}
except Exception as e:
logger.error(
f"Error dropping workspace {workspace_label} from Memgraph database {self._DATABASE}: {e}"
)
return {"status": "error", "message": str(e)}
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
"""Get the total degree (sum of relationships) of two nodes.
Args:
src_id: Label of the source node
tgt_id: Label of the target node
Returns:
int: Sum of the degrees of both nodes
"""
if self._driver is None:
raise RuntimeError(
"Memgraph driver is not initialized. Call 'await initialize()' first."
)
src_degree = await self.node_degree(src_id)
trg_degree = await self.node_degree(tgt_id)
# Convert None to 0 for addition
src_degree = 0 if src_degree is None else src_degree
trg_degree = 0 if trg_degree is None else trg_degree
degrees = int(src_degree) + int(trg_degree)
return degrees
async def get_nodes_by_chunk_ids(self, chunk_ids: list[str]) -> list[dict]:
"""Get all nodes that are associated with the given chunk_ids.
Args:
chunk_ids: List of chunk IDs to find associated nodes for
Returns:
list[dict]: A list of nodes, where each node is a dictionary of its properties.
An empty list if no matching nodes are found.
"""
if self._driver is None:
raise RuntimeError(
"Memgraph driver is not initialized. Call 'await initialize()' first."
)
workspace_label = self._get_workspace_label()
async with self._driver.session(
database=self._DATABASE, default_access_mode="READ"
) as session:
query = f"""
UNWIND $chunk_ids AS chunk_id
MATCH (n:`{workspace_label}`)
WHERE n.source_id IS NOT NULL AND chunk_id IN split(n.source_id, $sep)
RETURN DISTINCT n
"""
result = await session.run(query, chunk_ids=chunk_ids, sep=GRAPH_FIELD_SEP)
nodes = []
async for record in result:
node = record["n"]
node_dict = dict(node)
node_dict["id"] = node_dict.get("entity_id")
nodes.append(node_dict)
await result.consume()
return nodes
async def get_edges_by_chunk_ids(self, chunk_ids: list[str]) -> list[dict]:
"""Get all edges that are associated with the given chunk_ids.
Args:
chunk_ids: List of chunk IDs to find associated edges for
Returns:
list[dict]: A list of edges, where each edge is a dictionary of its properties.
An empty list if no matching edges are found.
"""
if self._driver is None:
raise RuntimeError(
"Memgraph driver is not initialized. Call 'await initialize()' first."
)
workspace_label = self._get_workspace_label()
async with self._driver.session(
database=self._DATABASE, default_access_mode="READ"
) as session:
query = f"""
UNWIND $chunk_ids AS chunk_id
MATCH (a:`{workspace_label}`)-[r]-(b:`{workspace_label}`)
WHERE r.source_id IS NOT NULL AND chunk_id IN split(r.source_id, $sep)
WITH a, b, r, a.entity_id AS source_id, b.entity_id AS target_id
// Ensure we only return each unique edge once by ordering the source and target
WITH a, b, r,
CASE WHEN source_id <= target_id THEN source_id ELSE target_id END AS ordered_source,
CASE WHEN source_id <= target_id THEN target_id ELSE source_id END AS ordered_target
RETURN DISTINCT ordered_source AS source, ordered_target AS target, properties(r) AS properties
"""
result = await session.run(query, chunk_ids=chunk_ids, sep=GRAPH_FIELD_SEP)
edges = []
async for record in result:
edge_properties = record["properties"]
edge_properties["source"] = record["source"]
edge_properties["target"] = record["target"]
edges.append(edge_properties)
await result.consume()
return edges
async def get_knowledge_graph(
self,
node_label: str,
max_depth: int = 3,
max_nodes: int = None,
) -> KnowledgeGraph:
"""
Retrieve a connected subgraph of nodes where the label includes the specified `node_label`.
Args:
node_label: Label of the starting node, * means all nodes
max_depth: Maximum depth of the subgraph, Defaults to 3
max_nodes: Maximum nodes to return by BFS, Defaults to 1000
Returns:
KnowledgeGraph object containing nodes and edges, with an is_truncated flag
indicating whether the graph was truncated due to max_nodes limit
"""
# Get max_nodes from global_config if not provided
if max_nodes is None:
max_nodes = self.global_config.get("max_graph_nodes", 1000)
else:
# Limit max_nodes to not exceed global_config max_graph_nodes
max_nodes = min(max_nodes, self.global_config.get("max_graph_nodes", 1000))
workspace_label = self._get_workspace_label()
result = KnowledgeGraph()
seen_nodes = set()
seen_edges = set()
async with self._driver.session(
database=self._DATABASE, default_access_mode="READ"
) as session:
try:
if node_label == "*":
# First check total node count to determine if graph is truncated
count_query = (
f"MATCH (n:`{workspace_label}`) RETURN count(n) as total"
)
count_result = None
try:
count_result = await session.run(count_query)
count_record = await count_result.single()
if count_record and count_record["total"] > max_nodes:
result.is_truncated = True
logger.info(
f"Graph truncated: {count_record['total']} nodes found, limited to {max_nodes}"
)
finally:
if count_result:
await count_result.consume()
# Run main query to get nodes with highest degree
main_query = f"""
MATCH (n:`{workspace_label}`)
OPTIONAL MATCH (n)-[r]-()
WITH n, COALESCE(count(r), 0) AS degree
ORDER BY degree DESC
LIMIT $max_nodes
WITH collect({{node: n}}) AS filtered_nodes
UNWIND filtered_nodes AS node_info
WITH collect(node_info.node) AS kept_nodes, filtered_nodes
OPTIONAL MATCH (a)-[r]-(b)
WHERE a IN kept_nodes AND b IN kept_nodes
RETURN filtered_nodes AS node_info,
collect(DISTINCT r) AS relationships
"""
result_set = None
try:
result_set = await session.run(
main_query,
{"max_nodes": max_nodes},
)
record = await result_set.single()
finally:
if result_set:
await result_set.consume()
else:
# For specific node queries, use path.subgraph_all with the refined query pattern
subgraph_query = f"""
MATCH (start:`{workspace_label}`)
WHERE start.entity_id = $entity_id
WITH start
CALL path.subgraph_all(start, {{
relationshipFilter: [],
labelFilter: ['{workspace_label}'],
minHops: 0,
maxHops: $max_depth
}})
YIELD nodes, rels
WITH
CASE
WHEN size(nodes) <= $max_nodes THEN nodes
ELSE nodes[0..$max_nodes]
END AS limited_nodes,
rels,
size(nodes) > $max_nodes AS is_truncated
UNWIND rels AS rel
WITH limited_nodes, rel, is_truncated
WHERE startNode(rel) IN limited_nodes AND endNode(rel) IN limited_nodes
WITH limited_nodes, collect(DISTINCT rel) AS limited_relationships, is_truncated
RETURN
[node IN limited_nodes | {{node: node}}] AS node_info,
limited_relationships AS relationships,
is_truncated
"""
result_set = None
try:
result_set = await session.run(
subgraph_query,
{
"entity_id": node_label,
"max_depth": max_depth,
"max_nodes": max_nodes,
},
)
record = await result_set.single()
# If no record found, return empty KnowledgeGraph
if not record:
logger.debug(f"No nodes found for entity_id: {node_label}")
return result
# Check if the result was truncated
if record.get("is_truncated"):
result.is_truncated = True
logger.info(
f"Graph truncated: breadth-first search limited to {max_nodes} nodes"
)
finally:
if result_set:
await result_set.consume()
if record:
for node_info in record["node_info"]:
node = node_info["node"]
node_id = node.id
if node_id not in seen_nodes:
result.nodes.append(
KnowledgeGraphNode(
id=f"{node_id}",
labels=[node.get("entity_id")],
properties=dict(node),
)
)
seen_nodes.add(node_id)
for rel in record["relationships"]:
edge_id = rel.id
if edge_id not in seen_edges:
start = rel.start_node
end = rel.end_node
result.edges.append(
KnowledgeGraphEdge(
id=f"{edge_id}",
type=rel.type,
source=f"{start.id}",
target=f"{end.id}",
properties=dict(rel),
)
)
seen_edges.add(edge_id)
logger.info(
f"Subgraph query successful | Node count: {len(result.nodes)} | Edge count: {len(result.edges)}"
)
except Exception as e:
logger.warning(f"Memgraph error during subgraph query: {str(e)}")
if node_label != "*":
logger.warning(
"Memgraph: falling back to basic Cypher recursive search..."
)
return await self._robust_fallback(node_label, max_depth, max_nodes)
else:
logger.warning(
"Memgraph: Mage plugin error with wildcard query, returning empty result"
)
return result
async def _robust_fallback(
self, node_label: str, max_depth: int, max_nodes: int
) -> KnowledgeGraph:
"""
Fallback implementation when MAGE plugin is not available or incompatible.
This method implements the same functionality as get_knowledge_graph but uses
only basic Cypher queries and true breadth-first traversal instead of MAGE procedures.
"""
from collections import deque
result = KnowledgeGraph()
visited_nodes = set()
visited_edges = set()
visited_edge_pairs = set()
# Get the starting node's data
workspace_label = self._get_workspace_label()
async with self._driver.session(
database=self._DATABASE, default_access_mode="READ"
) as session:
query = f"""
MATCH (n:`{workspace_label}` {{entity_id: $entity_id}})
RETURN id(n) as node_id, n
"""
node_result = await session.run(query, entity_id=node_label)
try:
node_record = await node_result.single()
if not node_record:
return result
# Create initial KnowledgeGraphNode
start_node = KnowledgeGraphNode(
id=f"{node_record['n'].get('entity_id')}",
labels=[node_record["n"].get("entity_id")],
properties=dict(node_record["n"]._properties),
)
finally:
await node_result.consume() # Ensure results are consumed
# Initialize queue for BFS with (node, depth) tuples
queue = deque([(start_node, 0)])
# Keep track of all nodes we've discovered (including those we might not add due to limits)
discovered_nodes = {} # node_id -> KnowledgeGraphNode
discovered_nodes[start_node.id] = start_node
# True BFS implementation using a queue
while queue:
# Dequeue the next node to process
current_node, current_depth = queue.popleft()
# Skip if already processed or exceeds max depth
if current_node.id in visited_nodes:
continue
if current_depth > max_depth:
logger.debug(
f"Skipping node at depth {current_depth} (max_depth: {max_depth})"
)
continue
# Check if we've reached the node limit
if len(visited_nodes) >= max_nodes:
result.is_truncated = True
logger.info(
f"Graph truncated: breadth-first search limited to: {max_nodes} nodes"
)
break
# Add current node to result
result.nodes.append(current_node)
visited_nodes.add(current_node.id)
# Only continue exploring if we haven't reached max depth
if current_depth < max_depth:
# Get all edges and target nodes for the current node
async with self._driver.session(
database=self._DATABASE, default_access_mode="READ"
) as session:
workspace_label = self._get_workspace_label()
query = f"""
MATCH (a:`{workspace_label}` {{entity_id: $entity_id}})-[r]-(b:`{workspace_label}`)
WHERE b.entity_id IS NOT NULL
RETURN r, b, id(r) as edge_id
"""
results = await session.run(query, entity_id=current_node.id)
# Get all records and release database connection
records = await results.fetch(
1000
) # Max neighbor nodes we can handle
await results.consume() # Ensure results are consumed
# Process all neighbors
for record in records:
rel = record["r"]
edge_id = str(record["edge_id"])
b_node = record["b"]
target_id = b_node.get("entity_id")
if target_id and edge_id not in visited_edges:
# Create KnowledgeGraphNode for target if not already discovered
if target_id not in discovered_nodes:
target_node = KnowledgeGraphNode(
id=f"{target_id}",
labels=[target_id],
properties=dict(b_node._properties),
)
discovered_nodes[target_id] = target_node
# Add to queue for further exploration
queue.append((target_node, current_depth + 1))
# Second pass: Add edges only between nodes that are actually in the result
final_node_ids = {node.id for node in result.nodes}
# Now collect all edges between the nodes we actually included
async with self._driver.session(
database=self._DATABASE, default_access_mode="READ"
) as session:
# Use a parameterized query to get all edges between our final nodes
query = f"""
UNWIND $node_ids AS node_id
MATCH (a:`{workspace_label}` {{entity_id: node_id}})-[r]-(b:`{workspace_label}`)
WHERE b.entity_id IN $node_ids
RETURN DISTINCT r, a.entity_id AS source_id, b.entity_id AS target_id, id(r) AS edge_id
"""
results = await session.run(query, node_ids=list(final_node_ids))
edges_to_add = []
async for record in results:
rel = record["r"]
edge_id = str(record["edge_id"])
source_id = record["source_id"]
target_id = record["target_id"]
if edge_id not in visited_edges:
# Create edge pair for deduplication (undirected)
sorted_pair = tuple(sorted([source_id, target_id]))
if sorted_pair not in visited_edge_pairs:
edges_to_add.append(
KnowledgeGraphEdge(
id=f"{edge_id}",
type=rel.type,
source=f"{source_id}",
target=f"{target_id}",
properties=dict(rel),
)
)
visited_edges.add(edge_id)
visited_edge_pairs.add(sorted_pair)
await results.consume()
# Add all valid edges to the result
result.edges.extend(edges_to_add)
logger.info(
f"BFS subgraph query successful | Node count: {len(result.nodes)} | Edge count: {len(result.edges)}"
)
return result