mirror of
https://github.com/HKUDS/LightRAG.git
synced 2025-07-04 07:26:17 +00:00
1825 lines
68 KiB
Python
1825 lines
68 KiB
Python
from fastapi import FastAPI, HTTPException, File, UploadFile, Form, Request
|
||
from fastapi.staticfiles import StaticFiles
|
||
from pydantic import BaseModel
|
||
import logging
|
||
import argparse
|
||
import json
|
||
import time
|
||
import re
|
||
from typing import List, Dict, Any, Optional, Union
|
||
from lightrag import LightRAG, QueryParam
|
||
from lightrag.api import __api_version__
|
||
|
||
from lightrag.utils import EmbeddingFunc
|
||
from enum import Enum
|
||
from pathlib import Path
|
||
import shutil
|
||
import aiofiles
|
||
from ascii_colors import trace_exception, ASCIIColors
|
||
import os
|
||
import configparser
|
||
|
||
from fastapi import Depends, Security
|
||
from fastapi.security import APIKeyHeader
|
||
from fastapi.middleware.cors import CORSMiddleware
|
||
from contextlib import asynccontextmanager
|
||
|
||
from starlette.status import HTTP_403_FORBIDDEN
|
||
import pipmaster as pm
|
||
|
||
from dotenv import load_dotenv
|
||
|
||
load_dotenv()
|
||
|
||
|
||
def estimate_tokens(text: str) -> int:
|
||
"""Estimate the number of tokens in text
|
||
Chinese characters: approximately 1.5 tokens per character
|
||
English characters: approximately 0.25 tokens per character
|
||
"""
|
||
# Use regex to match Chinese and non-Chinese characters separately
|
||
chinese_chars = len(re.findall(r"[\u4e00-\u9fff]", text))
|
||
non_chinese_chars = len(re.findall(r"[^\u4e00-\u9fff]", text))
|
||
|
||
# Calculate estimated token count
|
||
tokens = chinese_chars * 1.5 + non_chinese_chars * 0.25
|
||
|
||
return int(tokens)
|
||
|
||
|
||
# Constants for emulated Ollama model information
|
||
LIGHTRAG_NAME = "lightrag"
|
||
LIGHTRAG_TAG = os.getenv("OLLAMA_EMULATING_MODEL_TAG", "latest")
|
||
LIGHTRAG_MODEL = f"{LIGHTRAG_NAME}:{LIGHTRAG_TAG}"
|
||
LIGHTRAG_SIZE = 7365960935 # it's a dummy value
|
||
LIGHTRAG_CREATED_AT = "2024-01-15T00:00:00Z"
|
||
LIGHTRAG_DIGEST = "sha256:lightrag"
|
||
|
||
KV_STORAGE = "JsonKVStorage"
|
||
DOC_STATUS_STORAGE = "JsonDocStatusStorage"
|
||
GRAPH_STORAGE = "NetworkXStorage"
|
||
VECTOR_STORAGE = "NanoVectorDBStorage"
|
||
|
||
# read config.ini
|
||
config = configparser.ConfigParser()
|
||
config.read("config.ini")
|
||
# Redis config
|
||
redis_uri = config.get("redis", "uri", fallback=None)
|
||
if redis_uri:
|
||
os.environ["REDIS_URI"] = redis_uri
|
||
KV_STORAGE = "RedisKVStorage"
|
||
DOC_STATUS_STORAGE = "RedisKVStorage"
|
||
|
||
# Neo4j config
|
||
neo4j_uri = config.get("neo4j", "uri", fallback=None)
|
||
neo4j_username = config.get("neo4j", "username", fallback=None)
|
||
neo4j_password = config.get("neo4j", "password", fallback=None)
|
||
if neo4j_uri:
|
||
os.environ["NEO4J_URI"] = neo4j_uri
|
||
os.environ["NEO4J_USERNAME"] = neo4j_username
|
||
os.environ["NEO4J_PASSWORD"] = neo4j_password
|
||
GRAPH_STORAGE = "Neo4JStorage"
|
||
|
||
# Milvus config
|
||
milvus_uri = config.get("milvus", "uri", fallback=None)
|
||
milvus_user = config.get("milvus", "user", fallback=None)
|
||
milvus_password = config.get("milvus", "password", fallback=None)
|
||
milvus_db_name = config.get("milvus", "db_name", fallback=None)
|
||
if milvus_uri:
|
||
os.environ["MILVUS_URI"] = milvus_uri
|
||
os.environ["MILVUS_USER"] = milvus_user
|
||
os.environ["MILVUS_PASSWORD"] = milvus_password
|
||
os.environ["MILVUS_DB_NAME"] = milvus_db_name
|
||
VECTOR_STORAGE = "MilvusVectorDBStorge"
|
||
|
||
# MongoDB config
|
||
mongo_uri = config.get("mongodb", "uri", fallback=None)
|
||
mongo_database = config.get("mongodb", "LightRAG", fallback=None)
|
||
if mongo_uri:
|
||
os.environ["MONGO_URI"] = mongo_uri
|
||
os.environ["MONGO_DATABASE"] = mongo_database
|
||
KV_STORAGE = "MongoKVStorage"
|
||
DOC_STATUS_STORAGE = "MongoKVStorage"
|
||
|
||
|
||
def get_default_host(binding_type: str) -> str:
|
||
default_hosts = {
|
||
"ollama": os.getenv("LLM_BINDING_HOST", "http://localhost:11434"),
|
||
"lollms": os.getenv("LLM_BINDING_HOST", "http://localhost:9600"),
|
||
"azure_openai": os.getenv("AZURE_OPENAI_ENDPOINT", "https://api.openai.com/v1"),
|
||
"openai": os.getenv("LLM_BINDING_HOST", "https://api.openai.com/v1"),
|
||
}
|
||
return default_hosts.get(
|
||
binding_type, os.getenv("LLM_BINDING_HOST", "http://localhost:11434")
|
||
) # fallback to ollama if unknown
|
||
|
||
|
||
def get_env_value(env_key: str, default: Any, value_type: type = str) -> Any:
|
||
"""
|
||
Get value from environment variable with type conversion
|
||
|
||
Args:
|
||
env_key (str): Environment variable key
|
||
default (Any): Default value if env variable is not set
|
||
value_type (type): Type to convert the value to
|
||
|
||
Returns:
|
||
Any: Converted value from environment or default
|
||
"""
|
||
value = os.getenv(env_key)
|
||
if value is None:
|
||
return default
|
||
|
||
if isinstance(value_type, bool):
|
||
return value.lower() in ("true", "1", "yes")
|
||
try:
|
||
return value_type(value)
|
||
except ValueError:
|
||
return default
|
||
|
||
|
||
def display_splash_screen(args: argparse.Namespace) -> None:
|
||
"""
|
||
Display a colorful splash screen showing LightRAG server configuration
|
||
|
||
Args:
|
||
args: Parsed command line arguments
|
||
"""
|
||
# Banner
|
||
ASCIIColors.cyan(f"""
|
||
╔══════════════════════════════════════════════════════════════╗
|
||
║ 🚀 LightRAG Server v{__api_version__} ║
|
||
║ Fast, Lightweight RAG Server Implementation ║
|
||
╚══════════════════════════════════════════════════════════════╝
|
||
""")
|
||
|
||
# Server Configuration
|
||
ASCIIColors.magenta("\n📡 Server Configuration:")
|
||
ASCIIColors.white(" ├─ Host: ", end="")
|
||
ASCIIColors.yellow(f"{args.host}")
|
||
ASCIIColors.white(" ├─ Port: ", end="")
|
||
ASCIIColors.yellow(f"{args.port}")
|
||
ASCIIColors.white(" ├─ SSL Enabled: ", end="")
|
||
ASCIIColors.yellow(f"{args.ssl}")
|
||
if args.ssl:
|
||
ASCIIColors.white(" ├─ SSL Cert: ", end="")
|
||
ASCIIColors.yellow(f"{args.ssl_certfile}")
|
||
ASCIIColors.white(" └─ SSL Key: ", end="")
|
||
ASCIIColors.yellow(f"{args.ssl_keyfile}")
|
||
|
||
# Directory Configuration
|
||
ASCIIColors.magenta("\n📂 Directory Configuration:")
|
||
ASCIIColors.white(" ├─ Working Directory: ", end="")
|
||
ASCIIColors.yellow(f"{args.working_dir}")
|
||
ASCIIColors.white(" └─ Input Directory: ", end="")
|
||
ASCIIColors.yellow(f"{args.input_dir}")
|
||
|
||
# LLM Configuration
|
||
ASCIIColors.magenta("\n🤖 LLM Configuration:")
|
||
ASCIIColors.white(" ├─ Binding: ", end="")
|
||
ASCIIColors.yellow(f"{args.llm_binding}")
|
||
ASCIIColors.white(" ├─ Host: ", end="")
|
||
ASCIIColors.yellow(f"{args.llm_binding_host}")
|
||
ASCIIColors.white(" └─ Model: ", end="")
|
||
ASCIIColors.yellow(f"{args.llm_model}")
|
||
|
||
# Embedding Configuration
|
||
ASCIIColors.magenta("\n📊 Embedding Configuration:")
|
||
ASCIIColors.white(" ├─ Binding: ", end="")
|
||
ASCIIColors.yellow(f"{args.embedding_binding}")
|
||
ASCIIColors.white(" ├─ Host: ", end="")
|
||
ASCIIColors.yellow(f"{args.embedding_binding_host}")
|
||
ASCIIColors.white(" ├─ Model: ", end="")
|
||
ASCIIColors.yellow(f"{args.embedding_model}")
|
||
ASCIIColors.white(" └─ Dimensions: ", end="")
|
||
ASCIIColors.yellow(f"{args.embedding_dim}")
|
||
|
||
# RAG Configuration
|
||
ASCIIColors.magenta("\n⚙️ RAG Configuration:")
|
||
ASCIIColors.white(" ├─ Max Async Operations: ", end="")
|
||
ASCIIColors.yellow(f"{args.max_async}")
|
||
ASCIIColors.white(" ├─ Max Tokens: ", end="")
|
||
ASCIIColors.yellow(f"{args.max_tokens}")
|
||
ASCIIColors.white(" ├─ Max Embed Tokens: ", end="")
|
||
ASCIIColors.yellow(f"{args.max_embed_tokens}")
|
||
ASCIIColors.white(" ├─ Chunk Size: ", end="")
|
||
ASCIIColors.yellow(f"{args.chunk_size}")
|
||
ASCIIColors.white(" ├─ Chunk Overlap Size: ", end="")
|
||
ASCIIColors.yellow(f"{args.chunk_overlap_size}")
|
||
ASCIIColors.white(" └─ History Turns: ", end="")
|
||
ASCIIColors.yellow(f"{args.history_turns}")
|
||
|
||
# System Configuration
|
||
ASCIIColors.magenta("\n🛠️ System Configuration:")
|
||
ASCIIColors.white(" ├─ Ollama Emulating Model: ", end="")
|
||
ASCIIColors.yellow(f"{LIGHTRAG_MODEL}")
|
||
ASCIIColors.white(" ├─ Log Level: ", end="")
|
||
ASCIIColors.yellow(f"{args.log_level}")
|
||
ASCIIColors.white(" ├─ Timeout: ", end="")
|
||
ASCIIColors.yellow(f"{args.timeout if args.timeout else 'None (infinite)'}")
|
||
ASCIIColors.white(" └─ API Key: ", end="")
|
||
ASCIIColors.yellow("Set" if args.key else "Not Set")
|
||
|
||
# Server Status
|
||
ASCIIColors.green("\n✨ Server starting up...\n")
|
||
|
||
# Server Access Information
|
||
protocol = "https" if args.ssl else "http"
|
||
if args.host == "0.0.0.0":
|
||
ASCIIColors.magenta("\n🌐 Server Access Information:")
|
||
ASCIIColors.white(" ├─ Local Access: ", end="")
|
||
ASCIIColors.yellow(f"{protocol}://localhost:{args.port}")
|
||
ASCIIColors.white(" ├─ Remote Access: ", end="")
|
||
ASCIIColors.yellow(f"{protocol}://<your-ip-address>:{args.port}")
|
||
ASCIIColors.white(" ├─ API Documentation (local): ", end="")
|
||
ASCIIColors.yellow(f"{protocol}://localhost:{args.port}/docs")
|
||
ASCIIColors.white(" └─ Alternative Documentation (local): ", end="")
|
||
ASCIIColors.yellow(f"{protocol}://localhost:{args.port}/redoc")
|
||
|
||
ASCIIColors.yellow("\n📝 Note:")
|
||
ASCIIColors.white(""" Since the server is running on 0.0.0.0:
|
||
- Use 'localhost' or '127.0.0.1' for local access
|
||
- Use your machine's IP address for remote access
|
||
- To find your IP address:
|
||
• Windows: Run 'ipconfig' in terminal
|
||
• Linux/Mac: Run 'ifconfig' or 'ip addr' in terminal
|
||
""")
|
||
else:
|
||
base_url = f"{protocol}://{args.host}:{args.port}"
|
||
ASCIIColors.magenta("\n🌐 Server Access Information:")
|
||
ASCIIColors.white(" ├─ Base URL: ", end="")
|
||
ASCIIColors.yellow(f"{base_url}")
|
||
ASCIIColors.white(" ├─ API Documentation: ", end="")
|
||
ASCIIColors.yellow(f"{base_url}/docs")
|
||
ASCIIColors.white(" └─ Alternative Documentation: ", end="")
|
||
ASCIIColors.yellow(f"{base_url}/redoc")
|
||
|
||
# Usage Examples
|
||
ASCIIColors.magenta("\n📚 Quick Start Guide:")
|
||
ASCIIColors.cyan("""
|
||
1. Access the Swagger UI:
|
||
Open your browser and navigate to the API documentation URL above
|
||
|
||
2. API Authentication:""")
|
||
if args.key:
|
||
ASCIIColors.cyan(""" Add the following header to your requests:
|
||
X-API-Key: <your-api-key>
|
||
""")
|
||
else:
|
||
ASCIIColors.cyan(" No authentication required\n")
|
||
|
||
ASCIIColors.cyan(""" 3. Basic Operations:
|
||
- POST /upload_document: Upload new documents to RAG
|
||
- POST /query: Query your document collection
|
||
- GET /collections: List available collections
|
||
|
||
4. Monitor the server:
|
||
- Check server logs for detailed operation information
|
||
- Use healthcheck endpoint: GET /health
|
||
""")
|
||
|
||
# Security Notice
|
||
if args.key:
|
||
ASCIIColors.yellow("\n⚠️ Security Notice:")
|
||
ASCIIColors.white(""" API Key authentication is enabled.
|
||
Make sure to include the X-API-Key header in all your requests.
|
||
""")
|
||
|
||
ASCIIColors.green("Server is ready to accept connections! 🚀\n")
|
||
|
||
|
||
def parse_args() -> argparse.Namespace:
|
||
"""
|
||
Parse command line arguments with environment variable fallback
|
||
|
||
Returns:
|
||
argparse.Namespace: Parsed arguments
|
||
"""
|
||
|
||
parser = argparse.ArgumentParser(
|
||
description="LightRAG FastAPI Server with separate working and input directories"
|
||
)
|
||
|
||
# Bindings configuration
|
||
parser.add_argument(
|
||
"--llm-binding",
|
||
default=get_env_value("LLM_BINDING", "ollama"),
|
||
help="LLM binding to be used. Supported: lollms, ollama, openai (default: from env or ollama)",
|
||
)
|
||
parser.add_argument(
|
||
"--embedding-binding",
|
||
default=get_env_value("EMBEDDING_BINDING", "ollama"),
|
||
help="Embedding binding to be used. Supported: lollms, ollama, openai (default: from env or ollama)",
|
||
)
|
||
|
||
# Server configuration
|
||
parser.add_argument(
|
||
"--host",
|
||
default=get_env_value("HOST", "0.0.0.0"),
|
||
help="Server host (default: from env or 0.0.0.0)",
|
||
)
|
||
parser.add_argument(
|
||
"--port",
|
||
type=int,
|
||
default=get_env_value("PORT", 9621, int),
|
||
help="Server port (default: from env or 9621)",
|
||
)
|
||
|
||
# Directory configuration
|
||
parser.add_argument(
|
||
"--working-dir",
|
||
default=get_env_value("WORKING_DIR", "./rag_storage"),
|
||
help="Working directory for RAG storage (default: from env or ./rag_storage)",
|
||
)
|
||
parser.add_argument(
|
||
"--input-dir",
|
||
default=get_env_value("INPUT_DIR", "./inputs"),
|
||
help="Directory containing input documents (default: from env or ./inputs)",
|
||
)
|
||
|
||
# LLM Model configuration
|
||
parser.add_argument(
|
||
"--llm-binding-host",
|
||
default=get_env_value("LLM_BINDING_HOST", None),
|
||
help="LLM server host URL. If not provided, defaults based on llm-binding:\n"
|
||
+ "- ollama: http://localhost:11434\n"
|
||
+ "- lollms: http://localhost:9600\n"
|
||
+ "- openai: https://api.openai.com/v1",
|
||
)
|
||
|
||
default_llm_api_key = get_env_value("LLM_BINDING_API_KEY", None)
|
||
|
||
parser.add_argument(
|
||
"--llm-binding-api-key",
|
||
default=default_llm_api_key,
|
||
help="llm server API key (default: from env or empty string)",
|
||
)
|
||
|
||
parser.add_argument(
|
||
"--llm-model",
|
||
default=get_env_value("LLM_MODEL", "mistral-nemo:latest"),
|
||
help="LLM model name (default: from env or mistral-nemo:latest)",
|
||
)
|
||
|
||
# Embedding model configuration
|
||
parser.add_argument(
|
||
"--embedding-binding-host",
|
||
default=get_env_value("EMBEDDING_BINDING_HOST", None),
|
||
help="Embedding server host URL. If not provided, defaults based on embedding-binding:\n"
|
||
+ "- ollama: http://localhost:11434\n"
|
||
+ "- lollms: http://localhost:9600\n"
|
||
+ "- openai: https://api.openai.com/v1",
|
||
)
|
||
|
||
default_embedding_api_key = get_env_value("EMBEDDING_BINDING_API_KEY", "")
|
||
parser.add_argument(
|
||
"--embedding-binding-api-key",
|
||
default=default_embedding_api_key,
|
||
help="embedding server API key (default: from env or empty string)",
|
||
)
|
||
|
||
parser.add_argument(
|
||
"--embedding-model",
|
||
default=get_env_value("EMBEDDING_MODEL", "bge-m3:latest"),
|
||
help="Embedding model name (default: from env or bge-m3:latest)",
|
||
)
|
||
|
||
parser.add_argument(
|
||
"--chunk_size",
|
||
default=get_env_value("CHUNK_SIZE", 1200),
|
||
help="chunk chunk size default 1200",
|
||
)
|
||
|
||
parser.add_argument(
|
||
"--chunk_overlap_size",
|
||
default=get_env_value("CHUNK_OVERLAP_SIZE", 100),
|
||
help="chunk overlap size default 100",
|
||
)
|
||
|
||
def timeout_type(value):
|
||
if value is None or value == "None":
|
||
return None
|
||
return int(value)
|
||
|
||
parser.add_argument(
|
||
"--timeout",
|
||
default=get_env_value("TIMEOUT", None, timeout_type),
|
||
type=timeout_type,
|
||
help="Timeout in seconds (useful when using slow AI). Use None for infinite timeout",
|
||
)
|
||
|
||
# RAG configuration
|
||
parser.add_argument(
|
||
"--max-async",
|
||
type=int,
|
||
default=get_env_value("MAX_ASYNC", 4, int),
|
||
help="Maximum async operations (default: from env or 4)",
|
||
)
|
||
parser.add_argument(
|
||
"--max-tokens",
|
||
type=int,
|
||
default=get_env_value("MAX_TOKENS", 32768, int),
|
||
help="Maximum token size (default: from env or 32768)",
|
||
)
|
||
parser.add_argument(
|
||
"--embedding-dim",
|
||
type=int,
|
||
default=get_env_value("EMBEDDING_DIM", 1024, int),
|
||
help="Embedding dimensions (default: from env or 1024)",
|
||
)
|
||
parser.add_argument(
|
||
"--max-embed-tokens",
|
||
type=int,
|
||
default=get_env_value("MAX_EMBED_TOKENS", 8192, int),
|
||
help="Maximum embedding token size (default: from env or 8192)",
|
||
)
|
||
|
||
# Logging configuration
|
||
parser.add_argument(
|
||
"--log-level",
|
||
default=get_env_value("LOG_LEVEL", "INFO"),
|
||
choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"],
|
||
help="Logging level (default: from env or INFO)",
|
||
)
|
||
|
||
parser.add_argument(
|
||
"--key",
|
||
type=str,
|
||
default=get_env_value("LIGHTRAG_API_KEY", None),
|
||
help="API key for authentication. This protects lightrag server against unauthorized access",
|
||
)
|
||
|
||
# Optional https parameters
|
||
parser.add_argument(
|
||
"--ssl",
|
||
action="store_true",
|
||
default=get_env_value("SSL", False, bool),
|
||
help="Enable HTTPS (default: from env or False)",
|
||
)
|
||
parser.add_argument(
|
||
"--ssl-certfile",
|
||
default=get_env_value("SSL_CERTFILE", None),
|
||
help="Path to SSL certificate file (required if --ssl is enabled)",
|
||
)
|
||
parser.add_argument(
|
||
"--ssl-keyfile",
|
||
default=get_env_value("SSL_KEYFILE", None),
|
||
help="Path to SSL private key file (required if --ssl is enabled)",
|
||
)
|
||
parser.add_argument(
|
||
"--auto-scan-at-startup",
|
||
action="store_true",
|
||
default=False,
|
||
help="Enable automatic scanning when the program starts",
|
||
)
|
||
|
||
parser.add_argument(
|
||
"--history-turns",
|
||
type=int,
|
||
default=get_env_value("HISTORY_TURNS", None, int),
|
||
help="Number of conversation history turns to include (default: from env or None)",
|
||
)
|
||
|
||
args = parser.parse_args()
|
||
|
||
return args
|
||
|
||
|
||
class DocumentManager:
|
||
"""Handles document operations and tracking"""
|
||
|
||
def __init__(
|
||
self,
|
||
input_dir: str,
|
||
supported_extensions: tuple = (".txt", ".md", ".pdf", ".docx", ".pptx"),
|
||
):
|
||
self.input_dir = Path(input_dir)
|
||
self.supported_extensions = supported_extensions
|
||
self.indexed_files = set()
|
||
|
||
# Create input directory if it doesn't exist
|
||
self.input_dir.mkdir(parents=True, exist_ok=True)
|
||
|
||
def scan_directory(self) -> List[Path]:
|
||
"""Scan input directory for new files"""
|
||
new_files = []
|
||
for ext in self.supported_extensions:
|
||
for file_path in self.input_dir.rglob(f"*{ext}"):
|
||
if file_path not in self.indexed_files:
|
||
new_files.append(file_path)
|
||
return new_files
|
||
|
||
def mark_as_indexed(self, file_path: Path):
|
||
"""Mark a file as indexed"""
|
||
self.indexed_files.add(file_path)
|
||
|
||
def is_supported_file(self, filename: str) -> bool:
|
||
"""Check if file type is supported"""
|
||
return any(filename.lower().endswith(ext) for ext in self.supported_extensions)
|
||
|
||
|
||
# Pydantic models
|
||
class SearchMode(str, Enum):
|
||
naive = "naive"
|
||
local = "local"
|
||
global_ = "global"
|
||
hybrid = "hybrid"
|
||
mix = "mix"
|
||
|
||
|
||
class OllamaMessage(BaseModel):
|
||
role: str
|
||
content: str
|
||
images: Optional[List[str]] = None
|
||
|
||
|
||
class OllamaChatRequest(BaseModel):
|
||
model: str = LIGHTRAG_MODEL
|
||
messages: List[OllamaMessage]
|
||
stream: bool = True # Default to streaming mode
|
||
options: Optional[Dict[str, Any]] = None
|
||
system: Optional[str] = None
|
||
|
||
|
||
class OllamaChatResponse(BaseModel):
|
||
model: str
|
||
created_at: str
|
||
message: OllamaMessage
|
||
done: bool
|
||
|
||
|
||
class OllamaGenerateRequest(BaseModel):
|
||
model: str = LIGHTRAG_MODEL
|
||
prompt: str
|
||
system: Optional[str] = None
|
||
stream: bool = False
|
||
options: Optional[Dict[str, Any]] = None
|
||
|
||
|
||
class OllamaGenerateResponse(BaseModel):
|
||
model: str
|
||
created_at: str
|
||
response: str
|
||
done: bool
|
||
context: Optional[List[int]]
|
||
total_duration: Optional[int]
|
||
load_duration: Optional[int]
|
||
prompt_eval_count: Optional[int]
|
||
prompt_eval_duration: Optional[int]
|
||
eval_count: Optional[int]
|
||
eval_duration: Optional[int]
|
||
|
||
|
||
class OllamaVersionResponse(BaseModel):
|
||
version: str
|
||
|
||
|
||
class OllamaModelDetails(BaseModel):
|
||
parent_model: str
|
||
format: str
|
||
family: str
|
||
families: List[str]
|
||
parameter_size: str
|
||
quantization_level: str
|
||
|
||
|
||
class OllamaModel(BaseModel):
|
||
name: str
|
||
model: str
|
||
size: int
|
||
digest: str
|
||
modified_at: str
|
||
details: OllamaModelDetails
|
||
|
||
|
||
class OllamaTagResponse(BaseModel):
|
||
models: List[OllamaModel]
|
||
|
||
|
||
class QueryRequest(BaseModel):
|
||
query: str
|
||
mode: SearchMode = SearchMode.hybrid
|
||
stream: bool = False
|
||
only_need_context: bool = False
|
||
|
||
|
||
class QueryResponse(BaseModel):
|
||
response: str
|
||
|
||
|
||
class InsertTextRequest(BaseModel):
|
||
text: str
|
||
description: Optional[str] = None
|
||
|
||
|
||
class InsertResponse(BaseModel):
|
||
status: str
|
||
message: str
|
||
document_count: int
|
||
|
||
|
||
def get_api_key_dependency(api_key: Optional[str]):
|
||
if not api_key:
|
||
# If no API key is configured, return a dummy dependency that always succeeds
|
||
async def no_auth():
|
||
return None
|
||
|
||
return no_auth
|
||
|
||
# If API key is configured, use proper authentication
|
||
api_key_header = APIKeyHeader(name="X-API-Key", auto_error=False)
|
||
|
||
async def api_key_auth(api_key_header_value: str | None = Security(api_key_header)):
|
||
if not api_key_header_value:
|
||
raise HTTPException(
|
||
status_code=HTTP_403_FORBIDDEN, detail="API Key required"
|
||
)
|
||
if api_key_header_value != api_key:
|
||
raise HTTPException(
|
||
status_code=HTTP_403_FORBIDDEN, detail="Invalid API Key"
|
||
)
|
||
return api_key_header_value
|
||
|
||
return api_key_auth
|
||
|
||
|
||
def create_app(args):
|
||
# Verify that bindings are correctly setup
|
||
if args.llm_binding not in [
|
||
"lollms",
|
||
"ollama",
|
||
"openai",
|
||
"openai-ollama",
|
||
"azure_openai",
|
||
]:
|
||
raise Exception("llm binding not supported")
|
||
|
||
if args.embedding_binding not in ["lollms", "ollama", "openai", "azure_openai"]:
|
||
raise Exception("embedding binding not supported")
|
||
|
||
# Set default hosts if not provided
|
||
if args.llm_binding_host is None:
|
||
args.llm_binding_host = get_default_host(args.llm_binding)
|
||
|
||
if args.embedding_binding_host is None:
|
||
args.embedding_binding_host = get_default_host(args.embedding_binding)
|
||
|
||
# Add SSL validation
|
||
if args.ssl:
|
||
if not args.ssl_certfile or not args.ssl_keyfile:
|
||
raise Exception(
|
||
"SSL certificate and key files must be provided when SSL is enabled"
|
||
)
|
||
if not os.path.exists(args.ssl_certfile):
|
||
raise Exception(f"SSL certificate file not found: {args.ssl_certfile}")
|
||
if not os.path.exists(args.ssl_keyfile):
|
||
raise Exception(f"SSL key file not found: {args.ssl_keyfile}")
|
||
|
||
# Setup logging
|
||
logging.basicConfig(
|
||
format="%(levelname)s:%(message)s", level=getattr(logging, args.log_level)
|
||
)
|
||
|
||
# Check if API key is provided either through env var or args
|
||
api_key = os.getenv("LIGHTRAG_API_KEY") or args.key
|
||
|
||
# Initialize document manager
|
||
doc_manager = DocumentManager(args.input_dir)
|
||
|
||
@asynccontextmanager
|
||
async def lifespan(app: FastAPI):
|
||
"""Lifespan context manager for startup and shutdown events"""
|
||
# Startup logic
|
||
if args.auto_scan_at_startup:
|
||
try:
|
||
new_files = doc_manager.scan_directory()
|
||
for file_path in new_files:
|
||
try:
|
||
await index_file(file_path)
|
||
except Exception as e:
|
||
trace_exception(e)
|
||
logging.error(f"Error indexing file {file_path}: {str(e)}")
|
||
|
||
ASCIIColors.info(
|
||
f"Indexed {len(new_files)} documents from {args.input_dir}"
|
||
)
|
||
except Exception as e:
|
||
logging.error(f"Error during startup indexing: {str(e)}")
|
||
yield
|
||
# Cleanup logic (if needed)
|
||
pass
|
||
|
||
# Initialize FastAPI
|
||
app = FastAPI(
|
||
title="LightRAG API",
|
||
description="API for querying text using LightRAG with separate storage and input directories"
|
||
+ "(With authentication)"
|
||
if api_key
|
||
else "",
|
||
version=__api_version__,
|
||
openapi_tags=[{"name": "api"}],
|
||
lifespan=lifespan,
|
||
)
|
||
|
||
# Add CORS middleware
|
||
app.add_middleware(
|
||
CORSMiddleware,
|
||
allow_origins=["*"],
|
||
allow_credentials=True,
|
||
allow_methods=["*"],
|
||
allow_headers=["*"],
|
||
)
|
||
|
||
# Create the optional API key dependency
|
||
optional_api_key = get_api_key_dependency(api_key)
|
||
|
||
# Create working directory if it doesn't exist
|
||
Path(args.working_dir).mkdir(parents=True, exist_ok=True)
|
||
if args.llm_binding == "lollms" or args.embedding_binding == "lollms":
|
||
from lightrag.llm.lollms import lollms_model_complete, lollms_embed
|
||
if args.llm_binding == "ollama" or args.embedding_binding == "ollama":
|
||
from lightrag.llm.ollama import ollama_model_complete, ollama_embed
|
||
if args.llm_binding == "openai" or args.embedding_binding == "openai":
|
||
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
||
if args.llm_binding == "azure_openai" or args.embedding_binding == "azure_openai":
|
||
from lightrag.llm.azure_openai import (
|
||
azure_openai_complete_if_cache,
|
||
azure_openai_embed,
|
||
)
|
||
|
||
async def openai_alike_model_complete(
|
||
prompt,
|
||
system_prompt=None,
|
||
history_messages=[],
|
||
keyword_extraction=False,
|
||
**kwargs,
|
||
) -> str:
|
||
return await openai_complete_if_cache(
|
||
args.llm_model,
|
||
prompt,
|
||
system_prompt=system_prompt,
|
||
history_messages=history_messages,
|
||
base_url=args.llm_binding_host,
|
||
api_key=args.llm_binding_api_key,
|
||
**kwargs,
|
||
)
|
||
|
||
async def azure_openai_model_complete(
|
||
prompt,
|
||
system_prompt=None,
|
||
history_messages=[],
|
||
keyword_extraction=False,
|
||
**kwargs,
|
||
) -> str:
|
||
return await azure_openai_complete_if_cache(
|
||
args.llm_model,
|
||
prompt,
|
||
system_prompt=system_prompt,
|
||
history_messages=history_messages,
|
||
base_url=args.llm_binding_host,
|
||
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
|
||
api_version=os.getenv("AZURE_OPENAI_API_VERSION", "2024-08-01-preview"),
|
||
**kwargs,
|
||
)
|
||
|
||
embedding_func = EmbeddingFunc(
|
||
embedding_dim=args.embedding_dim,
|
||
max_token_size=args.max_embed_tokens,
|
||
func=lambda texts: lollms_embed(
|
||
texts,
|
||
embed_model=args.embedding_model,
|
||
host=args.embedding_binding_host,
|
||
api_key=args.embedding_binding_api_key,
|
||
)
|
||
if args.embedding_binding == "lollms"
|
||
else ollama_embed(
|
||
texts,
|
||
embed_model=args.embedding_model,
|
||
host=args.embedding_binding_host,
|
||
api_key=args.embedding_binding_api_key,
|
||
)
|
||
if args.embedding_binding == "ollama"
|
||
else azure_openai_embed(
|
||
texts,
|
||
model=args.embedding_model, # no host is used for openai,
|
||
api_key=args.embedding_binding_api_key,
|
||
)
|
||
if args.embedding_binding == "azure_openai"
|
||
else openai_embed(
|
||
texts,
|
||
model=args.embedding_model, # no host is used for openai,
|
||
api_key=args.embedding_binding_api_key,
|
||
),
|
||
)
|
||
|
||
# Initialize RAG
|
||
if args.llm_binding in ["lollms", "ollama", "openai-ollama"]:
|
||
rag = LightRAG(
|
||
working_dir=args.working_dir,
|
||
llm_model_func=lollms_model_complete
|
||
if args.llm_binding == "lollms"
|
||
else ollama_model_complete
|
||
if args.llm_binding == "ollama"
|
||
else openai_alike_model_complete,
|
||
llm_model_name=args.llm_model,
|
||
llm_model_max_async=args.max_async,
|
||
llm_model_max_token_size=args.max_tokens,
|
||
chunk_token_size=int(args.chunk_size),
|
||
chunk_overlap_token_size=int(args.chunk_overlap_size),
|
||
llm_model_kwargs={
|
||
"host": args.llm_binding_host,
|
||
"timeout": args.timeout,
|
||
"options": {"num_ctx": args.max_tokens},
|
||
"api_key": args.llm_binding_api_key,
|
||
}
|
||
if args.llm_binding == "lollms" or args.llm_binding == "ollama"
|
||
else {},
|
||
embedding_func=embedding_func,
|
||
kv_storage=KV_STORAGE,
|
||
graph_storage=GRAPH_STORAGE,
|
||
vector_storage=VECTOR_STORAGE,
|
||
doc_status_storage=DOC_STATUS_STORAGE,
|
||
)
|
||
else:
|
||
rag = LightRAG(
|
||
working_dir=args.working_dir,
|
||
llm_model_func=azure_openai_model_complete
|
||
if args.llm_binding == "azure_openai"
|
||
else openai_alike_model_complete,
|
||
chunk_token_size=int(args.chunk_size),
|
||
chunk_overlap_token_size=int(args.chunk_overlap_size),
|
||
llm_model_name=args.llm_model,
|
||
llm_model_max_async=args.max_async,
|
||
llm_model_max_token_size=args.max_tokens,
|
||
embedding_func=embedding_func,
|
||
kv_storage=KV_STORAGE,
|
||
graph_storage=GRAPH_STORAGE,
|
||
vector_storage=VECTOR_STORAGE,
|
||
doc_status_storage=DOC_STATUS_STORAGE,
|
||
)
|
||
|
||
async def index_file(file_path: Union[str, Path]) -> None:
|
||
"""Index all files inside the folder with support for multiple file formats
|
||
|
||
Args:
|
||
file_path: Path to the file to be indexed (str or Path object)
|
||
|
||
Raises:
|
||
ValueError: If file format is not supported
|
||
FileNotFoundError: If file doesn't exist
|
||
"""
|
||
if not pm.is_installed("aiofiles"):
|
||
pm.install("aiofiles")
|
||
|
||
# Convert to Path object if string
|
||
file_path = Path(file_path)
|
||
|
||
# Check if file exists
|
||
if not file_path.exists():
|
||
raise FileNotFoundError(f"File not found: {file_path}")
|
||
|
||
content = ""
|
||
# Get file extension in lowercase
|
||
ext = file_path.suffix.lower()
|
||
|
||
match ext:
|
||
case ".txt" | ".md":
|
||
# Text files handling
|
||
async with aiofiles.open(file_path, "r", encoding="utf-8") as f:
|
||
content = await f.read()
|
||
|
||
case ".pdf":
|
||
if not pm.is_installed("pypdf2"):
|
||
pm.install("pypdf2")
|
||
from PyPDF2 import PdfReader
|
||
|
||
# PDF handling
|
||
reader = PdfReader(str(file_path))
|
||
content = ""
|
||
for page in reader.pages:
|
||
content += page.extract_text() + "\n"
|
||
|
||
case ".docx":
|
||
if not pm.is_installed("python-docx"):
|
||
pm.install("python-docx")
|
||
from docx import Document
|
||
|
||
# Word document handling
|
||
doc = Document(file_path)
|
||
content = "\n".join([paragraph.text for paragraph in doc.paragraphs])
|
||
|
||
case ".pptx":
|
||
if not pm.is_installed("pptx"):
|
||
pm.install("pptx")
|
||
from pptx import Presentation
|
||
|
||
# PowerPoint handling
|
||
prs = Presentation(file_path)
|
||
content = ""
|
||
for slide in prs.slides:
|
||
for shape in slide.shapes:
|
||
if hasattr(shape, "text"):
|
||
content += shape.text + "\n"
|
||
|
||
case _:
|
||
raise ValueError(f"Unsupported file format: {ext}")
|
||
|
||
# Insert content into RAG system
|
||
if content:
|
||
await rag.ainsert(content)
|
||
doc_manager.mark_as_indexed(file_path)
|
||
logging.info(f"Successfully indexed file: {file_path}")
|
||
else:
|
||
logging.warning(f"No content extracted from file: {file_path}")
|
||
|
||
@app.post("/documents/scan", dependencies=[Depends(optional_api_key)])
|
||
async def scan_for_new_documents():
|
||
"""
|
||
Manually trigger scanning for new documents in the directory managed by `doc_manager`.
|
||
|
||
This endpoint facilitates manual initiation of a document scan to identify and index new files.
|
||
It processes all newly detected files, attempts indexing each file, logs any errors that occur,
|
||
and returns a summary of the operation.
|
||
|
||
Returns:
|
||
dict: A dictionary containing:
|
||
- "status" (str): Indicates success or failure of the scanning process.
|
||
- "indexed_count" (int): The number of successfully indexed documents.
|
||
- "total_documents" (int): Total number of documents that have been indexed so far.
|
||
|
||
Raises:
|
||
HTTPException: If an error occurs during the document scanning process, a 500 status
|
||
code is returned with details about the exception.
|
||
"""
|
||
try:
|
||
new_files = doc_manager.scan_directory()
|
||
indexed_count = 0
|
||
|
||
for file_path in new_files:
|
||
try:
|
||
await index_file(file_path)
|
||
indexed_count += 1
|
||
except Exception as e:
|
||
logging.error(f"Error indexing file {file_path}: {str(e)}")
|
||
|
||
return {
|
||
"status": "success",
|
||
"indexed_count": indexed_count,
|
||
"total_documents": len(doc_manager.indexed_files),
|
||
}
|
||
except Exception as e:
|
||
raise HTTPException(status_code=500, detail=str(e))
|
||
|
||
@app.post("/documents/upload", dependencies=[Depends(optional_api_key)])
|
||
async def upload_to_input_dir(file: UploadFile = File(...)):
|
||
"""
|
||
Endpoint for uploading a file to the input directory and indexing it.
|
||
|
||
This API endpoint accepts a file through an HTTP POST request, checks if the
|
||
uploaded file is of a supported type, saves it in the specified input directory,
|
||
indexes it for retrieval, and returns a success status with relevant details.
|
||
|
||
Parameters:
|
||
file (UploadFile): The file to be uploaded. It must have an allowed extension as per
|
||
`doc_manager.supported_extensions`.
|
||
|
||
Returns:
|
||
dict: A dictionary containing the upload status ("success"),
|
||
a message detailing the operation result, and
|
||
the total number of indexed documents.
|
||
|
||
Raises:
|
||
HTTPException: If the file type is not supported, it raises a 400 Bad Request error.
|
||
If any other exception occurs during the file handling or indexing,
|
||
it raises a 500 Internal Server Error with details about the exception.
|
||
"""
|
||
try:
|
||
if not doc_manager.is_supported_file(file.filename):
|
||
raise HTTPException(
|
||
status_code=400,
|
||
detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}",
|
||
)
|
||
|
||
file_path = doc_manager.input_dir / file.filename
|
||
with open(file_path, "wb") as buffer:
|
||
shutil.copyfileobj(file.file, buffer)
|
||
|
||
# Immediately index the uploaded file
|
||
await index_file(file_path)
|
||
|
||
return {
|
||
"status": "success",
|
||
"message": f"File uploaded and indexed: {file.filename}",
|
||
"total_documents": len(doc_manager.indexed_files),
|
||
}
|
||
except Exception as e:
|
||
raise HTTPException(status_code=500, detail=str(e))
|
||
|
||
@app.post(
|
||
"/query", response_model=QueryResponse, dependencies=[Depends(optional_api_key)]
|
||
)
|
||
async def query_text(request: QueryRequest):
|
||
"""
|
||
Handle a POST request at the /query endpoint to process user queries using RAG capabilities.
|
||
|
||
Parameters:
|
||
request (QueryRequest): A Pydantic model containing the following fields:
|
||
- query (str): The text of the user's query.
|
||
- mode (ModeEnum): Optional. Specifies the mode of retrieval augmentation.
|
||
- stream (bool): Optional. Determines if the response should be streamed.
|
||
- only_need_context (bool): Optional. If true, returns only the context without further processing.
|
||
|
||
Returns:
|
||
QueryResponse: A Pydantic model containing the result of the query processing.
|
||
If a string is returned (e.g., cache hit), it's directly returned.
|
||
Otherwise, an async generator may be used to build the response.
|
||
|
||
Raises:
|
||
HTTPException: Raised when an error occurs during the request handling process,
|
||
with status code 500 and detail containing the exception message.
|
||
"""
|
||
try:
|
||
response = await rag.aquery(
|
||
request.query,
|
||
param=QueryParam(
|
||
mode=request.mode,
|
||
stream=request.stream,
|
||
only_need_context=request.only_need_context,
|
||
),
|
||
)
|
||
|
||
# If response is a string (e.g. cache hit), return directly
|
||
if isinstance(response, str):
|
||
return QueryResponse(response=response)
|
||
|
||
# If it's an async generator, decide whether to stream based on stream parameter
|
||
if request.stream:
|
||
result = ""
|
||
async for chunk in response:
|
||
result += chunk
|
||
return QueryResponse(response=result)
|
||
else:
|
||
result = ""
|
||
async for chunk in response:
|
||
result += chunk
|
||
return QueryResponse(response=result)
|
||
except Exception as e:
|
||
trace_exception(e)
|
||
raise HTTPException(status_code=500, detail=str(e))
|
||
|
||
@app.post("/query/stream", dependencies=[Depends(optional_api_key)])
|
||
async def query_text_stream(request: QueryRequest):
|
||
"""
|
||
This endpoint performs a retrieval-augmented generation (RAG) query and streams the response.
|
||
|
||
Args:
|
||
request (QueryRequest): The request object containing the query parameters.
|
||
optional_api_key (Optional[str], optional): An optional API key for authentication. Defaults to None.
|
||
|
||
Returns:
|
||
StreamingResponse: A streaming response containing the RAG query results.
|
||
"""
|
||
try:
|
||
response = await rag.aquery( # Use aquery instead of query, and add await
|
||
request.query,
|
||
param=QueryParam(
|
||
mode=request.mode,
|
||
stream=True,
|
||
only_need_context=request.only_need_context,
|
||
),
|
||
)
|
||
|
||
from fastapi.responses import StreamingResponse
|
||
|
||
async def stream_generator():
|
||
if isinstance(response, str):
|
||
# If it's a string, send it all at once
|
||
yield f"{json.dumps({'response': response})}\n"
|
||
else:
|
||
# If it's an async generator, send chunks one by one
|
||
try:
|
||
async for chunk in response:
|
||
if chunk: # Only send non-empty content
|
||
yield f"{json.dumps({'response': chunk})}\n"
|
||
except Exception as e:
|
||
logging.error(f"Streaming error: {str(e)}")
|
||
yield f"{json.dumps({'error': str(e)})}\n"
|
||
|
||
return StreamingResponse(
|
||
stream_generator(),
|
||
media_type="application/x-ndjson",
|
||
headers={
|
||
"Cache-Control": "no-cache",
|
||
"Connection": "keep-alive",
|
||
"Content-Type": "application/x-ndjson",
|
||
"Access-Control-Allow-Origin": "*",
|
||
"Access-Control-Allow-Methods": "POST, OPTIONS",
|
||
"Access-Control-Allow-Headers": "Content-Type",
|
||
"X-Accel-Buffering": "no", # Disable Nginx buffering
|
||
},
|
||
)
|
||
except Exception as e:
|
||
trace_exception(e)
|
||
raise HTTPException(status_code=500, detail=str(e))
|
||
|
||
@app.post(
|
||
"/documents/text",
|
||
response_model=InsertResponse,
|
||
dependencies=[Depends(optional_api_key)],
|
||
)
|
||
async def insert_text(request: InsertTextRequest):
|
||
"""
|
||
Insert text into the Retrieval-Augmented Generation (RAG) system.
|
||
|
||
This endpoint allows you to insert text data into the RAG system for later retrieval and use in generating responses.
|
||
|
||
Args:
|
||
request (InsertTextRequest): The request body containing the text to be inserted.
|
||
|
||
Returns:
|
||
InsertResponse: A response object containing the status of the operation, a message, and the number of documents inserted.
|
||
"""
|
||
try:
|
||
await rag.ainsert(request.text)
|
||
return InsertResponse(
|
||
status="success",
|
||
message="Text successfully inserted",
|
||
document_count=1,
|
||
)
|
||
except Exception as e:
|
||
raise HTTPException(status_code=500, detail=str(e))
|
||
|
||
@app.post(
|
||
"/documents/file",
|
||
response_model=InsertResponse,
|
||
dependencies=[Depends(optional_api_key)],
|
||
)
|
||
async def insert_file(file: UploadFile = File(...), description: str = Form(None)):
|
||
"""Insert a file directly into the RAG system
|
||
|
||
Args:
|
||
file: Uploaded file
|
||
description: Optional description of the file
|
||
|
||
Returns:
|
||
InsertResponse: Status of the insertion operation
|
||
|
||
Raises:
|
||
HTTPException: For unsupported file types or processing errors
|
||
"""
|
||
try:
|
||
content = ""
|
||
# Get file extension in lowercase
|
||
ext = Path(file.filename).suffix.lower()
|
||
|
||
match ext:
|
||
case ".txt" | ".md":
|
||
# Text files handling
|
||
text_content = await file.read()
|
||
content = text_content.decode("utf-8")
|
||
|
||
case ".pdf":
|
||
if not pm.is_installed("pypdf2"):
|
||
pm.install("pypdf2")
|
||
from PyPDF2 import PdfReader
|
||
from io import BytesIO
|
||
|
||
# Read PDF from memory
|
||
pdf_content = await file.read()
|
||
pdf_file = BytesIO(pdf_content)
|
||
reader = PdfReader(pdf_file)
|
||
content = ""
|
||
for page in reader.pages:
|
||
content += page.extract_text() + "\n"
|
||
|
||
case ".docx":
|
||
if not pm.is_installed("python-docx"):
|
||
pm.install("python-docx")
|
||
from docx import Document
|
||
from io import BytesIO
|
||
|
||
# Read DOCX from memory
|
||
docx_content = await file.read()
|
||
docx_file = BytesIO(docx_content)
|
||
doc = Document(docx_file)
|
||
content = "\n".join(
|
||
[paragraph.text for paragraph in doc.paragraphs]
|
||
)
|
||
|
||
case ".pptx":
|
||
if not pm.is_installed("pptx"):
|
||
pm.install("pptx")
|
||
from pptx import Presentation
|
||
from io import BytesIO
|
||
|
||
# Read PPTX from memory
|
||
pptx_content = await file.read()
|
||
pptx_file = BytesIO(pptx_content)
|
||
prs = Presentation(pptx_file)
|
||
content = ""
|
||
for slide in prs.slides:
|
||
for shape in slide.shapes:
|
||
if hasattr(shape, "text"):
|
||
content += shape.text + "\n"
|
||
|
||
case _:
|
||
raise HTTPException(
|
||
status_code=400,
|
||
detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}",
|
||
)
|
||
|
||
# Insert content into RAG system
|
||
if content:
|
||
# Add description if provided
|
||
if description:
|
||
content = f"{description}\n\n{content}"
|
||
|
||
await rag.ainsert(content)
|
||
logging.info(f"Successfully indexed file: {file.filename}")
|
||
|
||
return InsertResponse(
|
||
status="success",
|
||
message=f"File '{file.filename}' successfully inserted",
|
||
document_count=1,
|
||
)
|
||
else:
|
||
raise HTTPException(
|
||
status_code=400,
|
||
detail="No content could be extracted from the file",
|
||
)
|
||
|
||
except UnicodeDecodeError:
|
||
raise HTTPException(status_code=400, detail="File encoding not supported")
|
||
except Exception as e:
|
||
logging.error(f"Error processing file {file.filename}: {str(e)}")
|
||
raise HTTPException(status_code=500, detail=str(e))
|
||
|
||
@app.post(
|
||
"/documents/batch",
|
||
response_model=InsertResponse,
|
||
dependencies=[Depends(optional_api_key)],
|
||
)
|
||
async def insert_batch(files: List[UploadFile] = File(...)):
|
||
"""Process multiple files in batch mode
|
||
|
||
Args:
|
||
files: List of files to process
|
||
|
||
Returns:
|
||
InsertResponse: Status of the batch insertion operation
|
||
|
||
Raises:
|
||
HTTPException: For processing errors
|
||
"""
|
||
try:
|
||
inserted_count = 0
|
||
failed_files = []
|
||
|
||
for file in files:
|
||
try:
|
||
content = ""
|
||
ext = Path(file.filename).suffix.lower()
|
||
|
||
match ext:
|
||
case ".txt" | ".md":
|
||
text_content = await file.read()
|
||
content = text_content.decode("utf-8")
|
||
|
||
case ".pdf":
|
||
if not pm.is_installed("pypdf2"):
|
||
pm.install("pypdf2")
|
||
from PyPDF2 import PdfReader
|
||
from io import BytesIO
|
||
|
||
pdf_content = await file.read()
|
||
pdf_file = BytesIO(pdf_content)
|
||
reader = PdfReader(pdf_file)
|
||
for page in reader.pages:
|
||
content += page.extract_text() + "\n"
|
||
|
||
case ".docx":
|
||
if not pm.is_installed("docx"):
|
||
pm.install("docx")
|
||
from docx import Document
|
||
from io import BytesIO
|
||
|
||
docx_content = await file.read()
|
||
docx_file = BytesIO(docx_content)
|
||
doc = Document(docx_file)
|
||
content = "\n".join(
|
||
[paragraph.text for paragraph in doc.paragraphs]
|
||
)
|
||
|
||
case ".pptx":
|
||
if not pm.is_installed("pptx"):
|
||
pm.install("pptx")
|
||
from pptx import Presentation
|
||
from io import BytesIO
|
||
|
||
pptx_content = await file.read()
|
||
pptx_file = BytesIO(pptx_content)
|
||
prs = Presentation(pptx_file)
|
||
for slide in prs.slides:
|
||
for shape in slide.shapes:
|
||
if hasattr(shape, "text"):
|
||
content += shape.text + "\n"
|
||
|
||
case _:
|
||
failed_files.append(f"{file.filename} (unsupported type)")
|
||
continue
|
||
|
||
if content:
|
||
await rag.ainsert(content)
|
||
inserted_count += 1
|
||
logging.info(f"Successfully indexed file: {file.filename}")
|
||
else:
|
||
failed_files.append(f"{file.filename} (no content extracted)")
|
||
|
||
except UnicodeDecodeError:
|
||
failed_files.append(f"{file.filename} (encoding error)")
|
||
except Exception as e:
|
||
failed_files.append(f"{file.filename} ({str(e)})")
|
||
logging.error(f"Error processing file {file.filename}: {str(e)}")
|
||
|
||
# Prepare status message
|
||
if inserted_count == len(files):
|
||
status = "success"
|
||
status_message = f"Successfully inserted all {inserted_count} documents"
|
||
elif inserted_count > 0:
|
||
status = "partial_success"
|
||
status_message = f"Successfully inserted {inserted_count} out of {len(files)} documents"
|
||
if failed_files:
|
||
status_message += f". Failed files: {', '.join(failed_files)}"
|
||
else:
|
||
status = "failure"
|
||
status_message = "No documents were successfully inserted"
|
||
if failed_files:
|
||
status_message += f". Failed files: {', '.join(failed_files)}"
|
||
|
||
return InsertResponse(
|
||
status=status,
|
||
message=status_message,
|
||
document_count=inserted_count,
|
||
)
|
||
|
||
except Exception as e:
|
||
logging.error(f"Batch processing error: {str(e)}")
|
||
raise HTTPException(status_code=500, detail=str(e))
|
||
|
||
@app.delete(
|
||
"/documents",
|
||
response_model=InsertResponse,
|
||
dependencies=[Depends(optional_api_key)],
|
||
)
|
||
async def clear_documents():
|
||
"""
|
||
Clear all documents from the LightRAG system.
|
||
|
||
This endpoint deletes all text chunks, entities vector database, and relationships vector database,
|
||
effectively clearing all documents from the LightRAG system.
|
||
|
||
Returns:
|
||
InsertResponse: A response object containing the status, message, and the new document count (0 in this case).
|
||
"""
|
||
try:
|
||
rag.text_chunks = []
|
||
rag.entities_vdb = None
|
||
rag.relationships_vdb = None
|
||
return InsertResponse(
|
||
status="success",
|
||
message="All documents cleared successfully",
|
||
document_count=0,
|
||
)
|
||
except Exception as e:
|
||
raise HTTPException(status_code=500, detail=str(e))
|
||
|
||
# -------------------------------------------------
|
||
# Ollama compatible API endpoints
|
||
# -------------------------------------------------
|
||
@app.get("/api/version")
|
||
async def get_version():
|
||
"""Get Ollama version information"""
|
||
return OllamaVersionResponse(version="0.5.4")
|
||
|
||
@app.get("/api/tags")
|
||
async def get_tags():
|
||
"""Get available models"""
|
||
return OllamaTagResponse(
|
||
models=[
|
||
{
|
||
"name": LIGHTRAG_MODEL,
|
||
"model": LIGHTRAG_MODEL,
|
||
"size": LIGHTRAG_SIZE,
|
||
"digest": LIGHTRAG_DIGEST,
|
||
"modified_at": LIGHTRAG_CREATED_AT,
|
||
"details": {
|
||
"parent_model": "",
|
||
"format": "gguf",
|
||
"family": LIGHTRAG_NAME,
|
||
"families": [LIGHTRAG_NAME],
|
||
"parameter_size": "13B",
|
||
"quantization_level": "Q4_0",
|
||
},
|
||
}
|
||
]
|
||
)
|
||
|
||
def parse_query_mode(query: str) -> tuple[str, SearchMode]:
|
||
"""Parse query prefix to determine search mode
|
||
Returns tuple of (cleaned_query, search_mode)
|
||
"""
|
||
mode_map = {
|
||
"/local ": SearchMode.local,
|
||
"/global ": SearchMode.global_, # global_ is used because 'global' is a Python keyword
|
||
"/naive ": SearchMode.naive,
|
||
"/hybrid ": SearchMode.hybrid,
|
||
"/mix ": SearchMode.mix,
|
||
}
|
||
|
||
for prefix, mode in mode_map.items():
|
||
if query.startswith(prefix):
|
||
# After removing prefix an leading spaces
|
||
cleaned_query = query[len(prefix) :].lstrip()
|
||
return cleaned_query, mode
|
||
|
||
return query, SearchMode.hybrid
|
||
|
||
@app.post("/api/generate")
|
||
async def generate(raw_request: Request, request: OllamaGenerateRequest):
|
||
"""Handle generate completion requests"""
|
||
try:
|
||
query = request.prompt
|
||
start_time = time.time_ns()
|
||
prompt_tokens = estimate_tokens(query)
|
||
|
||
if request.system:
|
||
rag.llm_model_kwargs["system_prompt"] = request.system
|
||
|
||
if request.stream:
|
||
from fastapi.responses import StreamingResponse
|
||
|
||
response = await rag.llm_model_func(
|
||
query, stream=True, **rag.llm_model_kwargs
|
||
)
|
||
|
||
async def stream_generator():
|
||
try:
|
||
first_chunk_time = None
|
||
last_chunk_time = None
|
||
total_response = ""
|
||
|
||
# Ensure response is an async generator
|
||
if isinstance(response, str):
|
||
# If it's a string, send in two parts
|
||
first_chunk_time = time.time_ns()
|
||
last_chunk_time = first_chunk_time
|
||
total_response = response
|
||
|
||
data = {
|
||
"model": LIGHTRAG_MODEL,
|
||
"created_at": LIGHTRAG_CREATED_AT,
|
||
"response": response,
|
||
"done": False,
|
||
}
|
||
yield f"{json.dumps(data, ensure_ascii=False)}\n"
|
||
|
||
completion_tokens = estimate_tokens(total_response)
|
||
total_time = last_chunk_time - start_time
|
||
prompt_eval_time = first_chunk_time - start_time
|
||
eval_time = last_chunk_time - first_chunk_time
|
||
|
||
data = {
|
||
"model": LIGHTRAG_MODEL,
|
||
"created_at": LIGHTRAG_CREATED_AT,
|
||
"done": True,
|
||
"total_duration": total_time,
|
||
"load_duration": 0,
|
||
"prompt_eval_count": prompt_tokens,
|
||
"prompt_eval_duration": prompt_eval_time,
|
||
"eval_count": completion_tokens,
|
||
"eval_duration": eval_time,
|
||
}
|
||
yield f"{json.dumps(data, ensure_ascii=False)}\n"
|
||
else:
|
||
async for chunk in response:
|
||
if chunk:
|
||
if first_chunk_time is None:
|
||
first_chunk_time = time.time_ns()
|
||
|
||
last_chunk_time = time.time_ns()
|
||
|
||
total_response += chunk
|
||
data = {
|
||
"model": LIGHTRAG_MODEL,
|
||
"created_at": LIGHTRAG_CREATED_AT,
|
||
"response": chunk,
|
||
"done": False,
|
||
}
|
||
yield f"{json.dumps(data, ensure_ascii=False)}\n"
|
||
|
||
completion_tokens = estimate_tokens(total_response)
|
||
total_time = last_chunk_time - start_time
|
||
prompt_eval_time = first_chunk_time - start_time
|
||
eval_time = last_chunk_time - first_chunk_time
|
||
|
||
data = {
|
||
"model": LIGHTRAG_MODEL,
|
||
"created_at": LIGHTRAG_CREATED_AT,
|
||
"done": True,
|
||
"total_duration": total_time,
|
||
"load_duration": 0,
|
||
"prompt_eval_count": prompt_tokens,
|
||
"prompt_eval_duration": prompt_eval_time,
|
||
"eval_count": completion_tokens,
|
||
"eval_duration": eval_time,
|
||
}
|
||
yield f"{json.dumps(data, ensure_ascii=False)}\n"
|
||
return
|
||
|
||
except Exception as e:
|
||
logging.error(f"Error in stream_generator: {str(e)}")
|
||
raise
|
||
|
||
return StreamingResponse(
|
||
stream_generator(),
|
||
media_type="application/x-ndjson",
|
||
headers={
|
||
"Cache-Control": "no-cache",
|
||
"Connection": "keep-alive",
|
||
"Content-Type": "application/x-ndjson",
|
||
"Access-Control-Allow-Origin": "*",
|
||
"Access-Control-Allow-Methods": "POST, OPTIONS",
|
||
"Access-Control-Allow-Headers": "Content-Type",
|
||
},
|
||
)
|
||
else:
|
||
first_chunk_time = time.time_ns()
|
||
response_text = await rag.llm_model_func(
|
||
query, stream=False, **rag.llm_model_kwargs
|
||
)
|
||
last_chunk_time = time.time_ns()
|
||
|
||
if not response_text:
|
||
response_text = "No response generated"
|
||
|
||
completion_tokens = estimate_tokens(str(response_text))
|
||
total_time = last_chunk_time - start_time
|
||
prompt_eval_time = first_chunk_time - start_time
|
||
eval_time = last_chunk_time - first_chunk_time
|
||
|
||
return {
|
||
"model": LIGHTRAG_MODEL,
|
||
"created_at": LIGHTRAG_CREATED_AT,
|
||
"response": str(response_text),
|
||
"done": True,
|
||
"total_duration": total_time,
|
||
"load_duration": 0,
|
||
"prompt_eval_count": prompt_tokens,
|
||
"prompt_eval_duration": prompt_eval_time,
|
||
"eval_count": completion_tokens,
|
||
"eval_duration": eval_time,
|
||
}
|
||
except Exception as e:
|
||
trace_exception(e)
|
||
raise HTTPException(status_code=500, detail=str(e))
|
||
|
||
@app.post("/api/chat")
|
||
async def chat(raw_request: Request, request: OllamaChatRequest):
|
||
"""Handle chat completion requests"""
|
||
try:
|
||
# Get all messages
|
||
messages = request.messages
|
||
if not messages:
|
||
raise HTTPException(status_code=400, detail="No messages provided")
|
||
|
||
# Get the last message as query and previous messages as history
|
||
query = messages[-1].content
|
||
# Convert OllamaMessage objects to dictionaries
|
||
conversation_history = [
|
||
{"role": msg.role, "content": msg.content} for msg in messages[:-1]
|
||
]
|
||
|
||
# Check for query prefix
|
||
cleaned_query, mode = parse_query_mode(query)
|
||
|
||
start_time = time.time_ns()
|
||
prompt_tokens = estimate_tokens(cleaned_query)
|
||
|
||
# 构建 query_param
|
||
param_dict = {
|
||
"mode": mode,
|
||
"stream": request.stream,
|
||
"only_need_context": False,
|
||
"conversation_history": conversation_history,
|
||
}
|
||
|
||
# 如果设置了 history_turns,添加到参数中
|
||
if args.history_turns is not None:
|
||
param_dict["history_turns"] = args.history_turns
|
||
|
||
query_param = QueryParam(**param_dict)
|
||
|
||
if request.stream:
|
||
from fastapi.responses import StreamingResponse
|
||
|
||
response = await rag.aquery( # Need await to get async generator
|
||
cleaned_query, param=query_param
|
||
)
|
||
|
||
async def stream_generator():
|
||
try:
|
||
first_chunk_time = None
|
||
last_chunk_time = None
|
||
total_response = ""
|
||
|
||
# Ensure response is an async generator
|
||
if isinstance(response, str):
|
||
# If it's a string, send in two parts
|
||
first_chunk_time = time.time_ns()
|
||
last_chunk_time = first_chunk_time
|
||
total_response = response
|
||
|
||
data = {
|
||
"model": LIGHTRAG_MODEL,
|
||
"created_at": LIGHTRAG_CREATED_AT,
|
||
"message": {
|
||
"role": "assistant",
|
||
"content": response,
|
||
"images": None,
|
||
},
|
||
"done": False,
|
||
}
|
||
yield f"{json.dumps(data, ensure_ascii=False)}\n"
|
||
|
||
completion_tokens = estimate_tokens(total_response)
|
||
total_time = last_chunk_time - start_time
|
||
prompt_eval_time = first_chunk_time - start_time
|
||
eval_time = last_chunk_time - first_chunk_time
|
||
|
||
data = {
|
||
"model": LIGHTRAG_MODEL,
|
||
"created_at": LIGHTRAG_CREATED_AT,
|
||
"done": True,
|
||
"total_duration": total_time,
|
||
"load_duration": 0,
|
||
"prompt_eval_count": prompt_tokens,
|
||
"prompt_eval_duration": prompt_eval_time,
|
||
"eval_count": completion_tokens,
|
||
"eval_duration": eval_time,
|
||
}
|
||
yield f"{json.dumps(data, ensure_ascii=False)}\n"
|
||
else:
|
||
async for chunk in response:
|
||
if chunk:
|
||
if first_chunk_time is None:
|
||
first_chunk_time = time.time_ns()
|
||
|
||
last_chunk_time = time.time_ns()
|
||
|
||
total_response += chunk
|
||
data = {
|
||
"model": LIGHTRAG_MODEL,
|
||
"created_at": LIGHTRAG_CREATED_AT,
|
||
"message": {
|
||
"role": "assistant",
|
||
"content": chunk,
|
||
"images": None,
|
||
},
|
||
"done": False,
|
||
}
|
||
yield f"{json.dumps(data, ensure_ascii=False)}\n"
|
||
|
||
completion_tokens = estimate_tokens(total_response)
|
||
total_time = last_chunk_time - start_time
|
||
prompt_eval_time = first_chunk_time - start_time
|
||
eval_time = last_chunk_time - first_chunk_time
|
||
|
||
data = {
|
||
"model": LIGHTRAG_MODEL,
|
||
"created_at": LIGHTRAG_CREATED_AT,
|
||
"done": True,
|
||
"total_duration": total_time,
|
||
"load_duration": 0,
|
||
"prompt_eval_count": prompt_tokens,
|
||
"prompt_eval_duration": prompt_eval_time,
|
||
"eval_count": completion_tokens,
|
||
"eval_duration": eval_time,
|
||
}
|
||
yield f"{json.dumps(data, ensure_ascii=False)}\n"
|
||
return # Ensure the generator ends immediately after sending the completion marker
|
||
except Exception as e:
|
||
logging.error(f"Error in stream_generator: {str(e)}")
|
||
raise
|
||
|
||
return StreamingResponse(
|
||
stream_generator(),
|
||
media_type="application/x-ndjson",
|
||
headers={
|
||
"Cache-Control": "no-cache",
|
||
"Connection": "keep-alive",
|
||
"Content-Type": "application/x-ndjson",
|
||
"Access-Control-Allow-Origin": "*",
|
||
"Access-Control-Allow-Methods": "POST, OPTIONS",
|
||
"Access-Control-Allow-Headers": "Content-Type",
|
||
},
|
||
)
|
||
else:
|
||
first_chunk_time = time.time_ns()
|
||
|
||
# Determine if the request is from Open WebUI's session title and session keyword generation task
|
||
match_result = re.search(
|
||
r"\n<chat_history>\nUSER:", cleaned_query, re.MULTILINE
|
||
)
|
||
if match_result:
|
||
if request.system:
|
||
rag.llm_model_kwargs["system_prompt"] = request.system
|
||
|
||
response_text = await rag.llm_model_func(
|
||
cleaned_query, stream=False, **rag.llm_model_kwargs
|
||
)
|
||
else:
|
||
response_text = await rag.aquery(cleaned_query, param=query_param)
|
||
|
||
last_chunk_time = time.time_ns()
|
||
|
||
if not response_text:
|
||
response_text = "No response generated"
|
||
|
||
completion_tokens = estimate_tokens(str(response_text))
|
||
total_time = last_chunk_time - start_time
|
||
prompt_eval_time = first_chunk_time - start_time
|
||
eval_time = last_chunk_time - first_chunk_time
|
||
|
||
return {
|
||
"model": LIGHTRAG_MODEL,
|
||
"created_at": LIGHTRAG_CREATED_AT,
|
||
"message": {
|
||
"role": "assistant",
|
||
"content": str(response_text),
|
||
"images": None,
|
||
},
|
||
"done": True,
|
||
"total_duration": total_time,
|
||
"load_duration": 0,
|
||
"prompt_eval_count": prompt_tokens,
|
||
"prompt_eval_duration": prompt_eval_time,
|
||
"eval_count": completion_tokens,
|
||
"eval_duration": eval_time,
|
||
}
|
||
except Exception as e:
|
||
trace_exception(e)
|
||
raise HTTPException(status_code=500, detail=str(e))
|
||
|
||
@app.get("/health", dependencies=[Depends(optional_api_key)])
|
||
async def get_status():
|
||
"""Get current system status"""
|
||
return {
|
||
"status": "healthy",
|
||
"working_directory": str(args.working_dir),
|
||
"input_directory": str(args.input_dir),
|
||
"indexed_files": doc_manager.indexed_files,
|
||
"configuration": {
|
||
# LLM configuration binding/host address (if applicable)/model (if applicable)
|
||
"llm_binding": args.llm_binding,
|
||
"llm_binding_host": args.llm_binding_host,
|
||
"llm_model": args.llm_model,
|
||
# embedding model configuration binding/host address (if applicable)/model (if applicable)
|
||
"embedding_binding": args.embedding_binding,
|
||
"embedding_binding_host": args.embedding_binding_host,
|
||
"embedding_model": args.embedding_model,
|
||
"max_tokens": args.max_tokens,
|
||
},
|
||
}
|
||
|
||
# Serve the static files
|
||
static_dir = Path(__file__).parent / "static"
|
||
static_dir.mkdir(exist_ok=True)
|
||
app.mount("/", StaticFiles(directory=static_dir, html=True), name="static")
|
||
|
||
return app
|
||
|
||
|
||
def main():
|
||
args = parse_args()
|
||
import uvicorn
|
||
|
||
app = create_app(args)
|
||
display_splash_screen(args)
|
||
uvicorn_config = {
|
||
"app": app,
|
||
"host": args.host,
|
||
"port": args.port,
|
||
}
|
||
if args.ssl:
|
||
uvicorn_config.update(
|
||
{
|
||
"ssl_certfile": args.ssl_certfile,
|
||
"ssl_keyfile": args.ssl_keyfile,
|
||
}
|
||
)
|
||
uvicorn.run(**uvicorn_config)
|
||
|
||
|
||
if __name__ == "__main__":
|
||
main()
|