mirror of
https://github.com/HKUDS/LightRAG.git
synced 2025-07-03 15:10:03 +00:00
946 lines
35 KiB
Python
946 lines
35 KiB
Python
import os
|
||
from dataclasses import dataclass
|
||
import numpy as np
|
||
import configparser
|
||
from tqdm.asyncio import tqdm as tqdm_async
|
||
import asyncio
|
||
|
||
from typing import Any, List, Union, final
|
||
|
||
from ..base import (
|
||
BaseGraphStorage,
|
||
BaseKVStorage,
|
||
BaseVectorStorage,
|
||
DocProcessingStatus,
|
||
DocStatus,
|
||
DocStatusStorage,
|
||
)
|
||
from ..namespace import NameSpace, is_namespace
|
||
from ..utils import logger
|
||
from ..types import KnowledgeGraph, KnowledgeGraphNode, KnowledgeGraphEdge
|
||
import pipmaster as pm
|
||
|
||
if not pm.is_installed("pymongo"):
|
||
pm.install("pymongo")
|
||
|
||
if not pm.is_installed("motor"):
|
||
pm.install("motor")
|
||
|
||
try:
|
||
from motor.motor_asyncio import AsyncIOMotorClient
|
||
from pymongo import MongoClient
|
||
from pymongo.operations import SearchIndexModel
|
||
from pymongo.errors import PyMongoError
|
||
except ImportError as e:
|
||
raise ImportError(
|
||
"`motor, pymongo` library is not installed. Please install it via pip: `pip install motor pymongo`."
|
||
) from e
|
||
|
||
config = configparser.ConfigParser()
|
||
config.read("config.ini", "utf-8")
|
||
|
||
|
||
@final
|
||
@dataclass
|
||
class MongoKVStorage(BaseKVStorage):
|
||
def __post_init__(self):
|
||
uri = os.environ.get(
|
||
"MONGO_URI",
|
||
config.get(
|
||
"mongodb", "uri", fallback="mongodb://root:root@localhost:27017/"
|
||
),
|
||
)
|
||
client = AsyncIOMotorClient(uri)
|
||
database = client.get_database(
|
||
os.environ.get(
|
||
"MONGO_DATABASE",
|
||
config.get("mongodb", "database", fallback="LightRAG"),
|
||
)
|
||
)
|
||
|
||
self._collection_name = self.namespace
|
||
|
||
self._data = database.get_collection(self._collection_name)
|
||
logger.debug(f"Use MongoDB as KV {self._collection_name}")
|
||
|
||
# Ensure collection exists
|
||
create_collection_if_not_exists(uri, database.name, self._collection_name)
|
||
|
||
async def get_by_id(self, id: str) -> dict[str, Any] | None:
|
||
return await self._data.find_one({"_id": id})
|
||
|
||
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
|
||
cursor = self._data.find({"_id": {"$in": ids}})
|
||
return await cursor.to_list()
|
||
|
||
async def filter_keys(self, keys: set[str]) -> set[str]:
|
||
cursor = self._data.find({"_id": {"$in": list(keys)}}, {"_id": 1})
|
||
existing_ids = {str(x["_id"]) async for x in cursor}
|
||
return keys - existing_ids
|
||
|
||
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
|
||
if is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
|
||
update_tasks = []
|
||
for mode, items in data.items():
|
||
for k, v in items.items():
|
||
key = f"{mode}_{k}"
|
||
data[mode][k]["_id"] = f"{mode}_{k}"
|
||
update_tasks.append(
|
||
self._data.update_one(
|
||
{"_id": key}, {"$setOnInsert": v}, upsert=True
|
||
)
|
||
)
|
||
await asyncio.gather(*update_tasks)
|
||
else:
|
||
update_tasks = []
|
||
for k, v in data.items():
|
||
data[k]["_id"] = k
|
||
update_tasks.append(
|
||
self._data.update_one({"_id": k}, {"$set": v}, upsert=True)
|
||
)
|
||
await asyncio.gather(*update_tasks)
|
||
|
||
async def get_by_mode_and_id(self, mode: str, id: str) -> Union[dict, None]:
|
||
if is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
|
||
res = {}
|
||
v = await self._data.find_one({"_id": mode + "_" + id})
|
||
if v:
|
||
res[id] = v
|
||
logger.debug(f"llm_response_cache find one by:{id}")
|
||
return res
|
||
else:
|
||
return None
|
||
else:
|
||
return None
|
||
|
||
async def index_done_callback(self) -> None:
|
||
# Mongo handles persistence automatically
|
||
pass
|
||
|
||
async def drop(self) -> None:
|
||
"""Drop the collection"""
|
||
await self._data.drop()
|
||
|
||
|
||
@final
|
||
@dataclass
|
||
class MongoDocStatusStorage(DocStatusStorage):
|
||
def __post_init__(self):
|
||
uri = os.environ.get(
|
||
"MONGO_URI",
|
||
config.get(
|
||
"mongodb", "uri", fallback="mongodb://root:root@localhost:27017/"
|
||
),
|
||
)
|
||
client = AsyncIOMotorClient(uri)
|
||
database = client.get_database(
|
||
os.environ.get(
|
||
"MONGO_DATABASE",
|
||
config.get("mongodb", "database", fallback="LightRAG"),
|
||
)
|
||
)
|
||
|
||
self._collection_name = self.namespace
|
||
self._data = database.get_collection(self._collection_name)
|
||
|
||
logger.debug(f"Use MongoDB as doc status {self._collection_name}")
|
||
|
||
# Ensure collection exists
|
||
create_collection_if_not_exists(uri, database.name, self._collection_name)
|
||
|
||
async def get_by_id(self, id: str) -> Union[dict[str, Any], None]:
|
||
return await self._data.find_one({"_id": id})
|
||
|
||
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
|
||
cursor = self._data.find({"_id": {"$in": ids}})
|
||
return await cursor.to_list()
|
||
|
||
async def filter_keys(self, data: set[str]) -> set[str]:
|
||
cursor = self._data.find({"_id": {"$in": list(data)}}, {"_id": 1})
|
||
existing_ids = {str(x["_id"]) async for x in cursor}
|
||
return data - existing_ids
|
||
|
||
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
|
||
update_tasks = []
|
||
for k, v in data.items():
|
||
data[k]["_id"] = k
|
||
update_tasks.append(
|
||
self._data.update_one({"_id": k}, {"$set": v}, upsert=True)
|
||
)
|
||
await asyncio.gather(*update_tasks)
|
||
|
||
async def drop(self) -> None:
|
||
"""Drop the collection"""
|
||
await self._data.drop()
|
||
|
||
async def get_status_counts(self) -> dict[str, int]:
|
||
"""Get counts of documents in each status"""
|
||
pipeline = [{"$group": {"_id": "$status", "count": {"$sum": 1}}}]
|
||
cursor = self._data.aggregate(pipeline)
|
||
result = await cursor.to_list()
|
||
counts = {}
|
||
for doc in result:
|
||
counts[doc["_id"]] = doc["count"]
|
||
return counts
|
||
|
||
async def get_docs_by_status(
|
||
self, status: DocStatus
|
||
) -> dict[str, DocProcessingStatus]:
|
||
"""Get all documents with a specific status"""
|
||
cursor = self._data.find({"status": status.value})
|
||
result = await cursor.to_list()
|
||
return {
|
||
doc["_id"]: DocProcessingStatus(
|
||
content=doc["content"],
|
||
content_summary=doc.get("content_summary"),
|
||
content_length=doc["content_length"],
|
||
status=doc["status"],
|
||
created_at=doc.get("created_at"),
|
||
updated_at=doc.get("updated_at"),
|
||
chunks_count=doc.get("chunks_count", -1),
|
||
)
|
||
for doc in result
|
||
}
|
||
|
||
async def index_done_callback(self) -> None:
|
||
# Mongo handles persistence automatically
|
||
pass
|
||
|
||
|
||
@final
|
||
@dataclass
|
||
class MongoGraphStorage(BaseGraphStorage):
|
||
"""
|
||
A concrete implementation using MongoDB’s $graphLookup to demonstrate multi-hop queries.
|
||
"""
|
||
|
||
def __init__(self, namespace, global_config, embedding_func):
|
||
super().__init__(
|
||
namespace=namespace,
|
||
global_config=global_config,
|
||
embedding_func=embedding_func,
|
||
)
|
||
uri = os.environ.get(
|
||
"MONGO_URI",
|
||
config.get(
|
||
"mongodb", "uri", fallback="mongodb://root:root@localhost:27017/"
|
||
),
|
||
)
|
||
client = AsyncIOMotorClient(uri)
|
||
database = client.get_database(
|
||
os.environ.get(
|
||
"MONGO_DATABASE",
|
||
config.get("mongodb", "database", fallback="LightRAG"),
|
||
)
|
||
)
|
||
|
||
self._collection_name = self.namespace
|
||
self.collection = database.get_collection(self._collection_name)
|
||
|
||
logger.debug(f"Use MongoDB as KG {self._collection_name}")
|
||
|
||
# Ensure collection exists
|
||
create_collection_if_not_exists(uri, database.name, self._collection_name)
|
||
|
||
#
|
||
# -------------------------------------------------------------------------
|
||
# HELPER: $graphLookup pipeline
|
||
# -------------------------------------------------------------------------
|
||
#
|
||
|
||
async def _graph_lookup(
|
||
self, start_node_id: str, max_depth: int = None
|
||
) -> List[dict]:
|
||
"""
|
||
Performs a $graphLookup starting from 'start_node_id' and returns
|
||
all reachable documents (including the start node itself).
|
||
|
||
Pipeline Explanation:
|
||
- 1) $match: We match the start node document by _id = start_node_id.
|
||
- 2) $graphLookup:
|
||
"from": same collection,
|
||
"startWith": "$edges.target" (the immediate neighbors in 'edges'),
|
||
"connectFromField": "edges.target",
|
||
"connectToField": "_id",
|
||
"as": "reachableNodes",
|
||
"maxDepth": max_depth (if provided),
|
||
"depthField": "depth" (used for debugging or filtering).
|
||
- 3) We add an $project or $unwind as needed to extract data.
|
||
"""
|
||
pipeline = [
|
||
{"$match": {"_id": start_node_id}},
|
||
{
|
||
"$graphLookup": {
|
||
"from": self.collection.name,
|
||
"startWith": "$edges.target",
|
||
"connectFromField": "edges.target",
|
||
"connectToField": "_id",
|
||
"as": "reachableNodes",
|
||
"depthField": "depth",
|
||
}
|
||
},
|
||
]
|
||
|
||
# If you want a limited depth (e.g., only 1 or 2 hops), set maxDepth
|
||
if max_depth is not None:
|
||
pipeline[1]["$graphLookup"]["maxDepth"] = max_depth
|
||
|
||
# Return the matching doc plus a field "reachableNodes"
|
||
cursor = self.collection.aggregate(pipeline)
|
||
results = await cursor.to_list(None)
|
||
|
||
# If there's no matching node, results = [].
|
||
# Otherwise, results[0] is the start node doc,
|
||
# plus results[0]["reachableNodes"] is the array of connected docs.
|
||
return results
|
||
|
||
#
|
||
# -------------------------------------------------------------------------
|
||
# BASIC QUERIES
|
||
# -------------------------------------------------------------------------
|
||
#
|
||
|
||
async def has_node(self, node_id: str) -> bool:
|
||
"""
|
||
Check if node_id is present in the collection by looking up its doc.
|
||
No real need for $graphLookup here, but let's keep it direct.
|
||
"""
|
||
doc = await self.collection.find_one({"_id": node_id}, {"_id": 1})
|
||
return doc is not None
|
||
|
||
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
|
||
"""
|
||
Check if there's a direct single-hop edge from source_node_id to target_node_id.
|
||
|
||
We'll do a $graphLookup with maxDepth=0 from the source node—meaning
|
||
“Look up zero expansions.” Actually, for a direct edge check, we can do maxDepth=1
|
||
and then see if the target node is in the "reachableNodes" at depth=0.
|
||
|
||
But typically for a direct edge, we might just do a find_one.
|
||
Below is a demonstration approach.
|
||
"""
|
||
# We can do a single-hop graphLookup (maxDepth=0 or 1).
|
||
# Then check if the target_node appears among the edges array.
|
||
pipeline = [
|
||
{"$match": {"_id": source_node_id}},
|
||
{
|
||
"$graphLookup": {
|
||
"from": self.collection.name,
|
||
"startWith": "$edges.target",
|
||
"connectFromField": "edges.target",
|
||
"connectToField": "_id",
|
||
"as": "reachableNodes",
|
||
"depthField": "depth",
|
||
"maxDepth": 0, # means: do not follow beyond immediate edges
|
||
}
|
||
},
|
||
{
|
||
"$project": {
|
||
"_id": 0,
|
||
"reachableNodes._id": 1, # only keep the _id from the subdocs
|
||
}
|
||
},
|
||
]
|
||
cursor = self.collection.aggregate(pipeline)
|
||
results = await cursor.to_list(None)
|
||
if not results:
|
||
return False
|
||
|
||
# results[0]["reachableNodes"] are the immediate neighbors
|
||
reachable_ids = [d["_id"] for d in results[0].get("reachableNodes", [])]
|
||
return target_node_id in reachable_ids
|
||
|
||
#
|
||
# -------------------------------------------------------------------------
|
||
# DEGREES
|
||
# -------------------------------------------------------------------------
|
||
#
|
||
|
||
async def node_degree(self, node_id: str) -> int:
|
||
"""
|
||
Returns the total number of edges connected to node_id (both inbound and outbound).
|
||
The easiest approach is typically two queries:
|
||
- count of edges array in node_id's doc
|
||
- count of how many other docs have node_id in their edges.target.
|
||
|
||
But we'll do a $graphLookup demonstration for inbound edges:
|
||
1) Outbound edges: direct from node's edges array
|
||
2) Inbound edges: we can do a special $graphLookup from all docs
|
||
or do an explicit match.
|
||
|
||
For demonstration, let's do this in two steps (with second step $graphLookup).
|
||
"""
|
||
# --- 1) Outbound edges (direct from doc) ---
|
||
doc = await self.collection.find_one({"_id": node_id}, {"edges": 1})
|
||
if not doc:
|
||
return 0
|
||
outbound_count = len(doc.get("edges", []))
|
||
|
||
# --- 2) Inbound edges:
|
||
# A simple way is: find all docs where "edges.target" == node_id.
|
||
# But let's do a $graphLookup from `node_id` in REVERSE.
|
||
# There's a trick to do "reverse" graphLookups: you'd store
|
||
# reversed edges or do a more advanced pipeline. Typically you'd do
|
||
# a direct match. We'll just do a direct match for inbound.
|
||
inbound_count_pipeline = [
|
||
{"$match": {"edges.target": node_id}},
|
||
{
|
||
"$project": {
|
||
"matchingEdgesCount": {
|
||
"$size": {
|
||
"$filter": {
|
||
"input": "$edges",
|
||
"as": "edge",
|
||
"cond": {"$eq": ["$$edge.target", node_id]},
|
||
}
|
||
}
|
||
}
|
||
}
|
||
},
|
||
{"$group": {"_id": None, "totalInbound": {"$sum": "$matchingEdgesCount"}}},
|
||
]
|
||
inbound_cursor = self.collection.aggregate(inbound_count_pipeline)
|
||
inbound_result = await inbound_cursor.to_list(None)
|
||
inbound_count = inbound_result[0]["totalInbound"] if inbound_result else 0
|
||
|
||
return outbound_count + inbound_count
|
||
|
||
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
|
||
"""
|
||
If your graph can hold multiple edges from the same src to the same tgt
|
||
(e.g. different 'relation' values), you can sum them. If it's always
|
||
one edge, this is typically 1 or 0.
|
||
|
||
We'll do a single-hop $graphLookup from src_id,
|
||
then count how many edges reference tgt_id at depth=0.
|
||
"""
|
||
pipeline = [
|
||
{"$match": {"_id": src_id}},
|
||
{
|
||
"$graphLookup": {
|
||
"from": self.collection.name,
|
||
"startWith": "$edges.target",
|
||
"connectFromField": "edges.target",
|
||
"connectToField": "_id",
|
||
"as": "neighbors",
|
||
"depthField": "depth",
|
||
"maxDepth": 0,
|
||
}
|
||
},
|
||
{"$project": {"edges": 1, "neighbors._id": 1, "neighbors.type": 1}},
|
||
]
|
||
cursor = self.collection.aggregate(pipeline)
|
||
results = await cursor.to_list(None)
|
||
if not results:
|
||
return 0
|
||
|
||
# We can simply count how many edges in `results[0].edges` have target == tgt_id.
|
||
edges = results[0].get("edges", [])
|
||
count = sum(1 for e in edges if e.get("target") == tgt_id)
|
||
return count
|
||
|
||
#
|
||
# -------------------------------------------------------------------------
|
||
# GETTERS
|
||
# -------------------------------------------------------------------------
|
||
#
|
||
|
||
async def get_node(self, node_id: str) -> dict[str, str] | None:
|
||
"""
|
||
Return the full node document (including "edges"), or None if missing.
|
||
"""
|
||
return await self.collection.find_one({"_id": node_id})
|
||
|
||
async def get_edge(
|
||
self, source_node_id: str, target_node_id: str
|
||
) -> dict[str, str] | None:
|
||
pipeline = [
|
||
{"$match": {"_id": source_node_id}},
|
||
{
|
||
"$graphLookup": {
|
||
"from": self.collection.name,
|
||
"startWith": "$edges.target",
|
||
"connectFromField": "edges.target",
|
||
"connectToField": "_id",
|
||
"as": "neighbors",
|
||
"depthField": "depth",
|
||
"maxDepth": 0,
|
||
}
|
||
},
|
||
{"$project": {"edges": 1}},
|
||
]
|
||
cursor = self.collection.aggregate(pipeline)
|
||
docs = await cursor.to_list(None)
|
||
if not docs:
|
||
return None
|
||
|
||
for e in docs[0].get("edges", []):
|
||
if e.get("target") == target_node_id:
|
||
return e
|
||
return None
|
||
|
||
async def get_node_edges(self, source_node_id: str) -> list[tuple[str, str]] | None:
|
||
"""
|
||
Return a list of (source_id, target_id) for direct edges from source_node_id.
|
||
Demonstrates $graphLookup at maxDepth=0, though direct doc retrieval is simpler.
|
||
"""
|
||
pipeline = [
|
||
{"$match": {"_id": source_node_id}},
|
||
{
|
||
"$graphLookup": {
|
||
"from": self.collection.name,
|
||
"startWith": "$edges.target",
|
||
"connectFromField": "edges.target",
|
||
"connectToField": "_id",
|
||
"as": "neighbors",
|
||
"depthField": "depth",
|
||
"maxDepth": 0,
|
||
}
|
||
},
|
||
{"$project": {"_id": 0, "edges": 1}},
|
||
]
|
||
cursor = self.collection.aggregate(pipeline)
|
||
result = await cursor.to_list(None)
|
||
if not result:
|
||
return None
|
||
|
||
edges = result[0].get("edges", [])
|
||
return [(source_node_id, e["target"]) for e in edges]
|
||
|
||
#
|
||
# -------------------------------------------------------------------------
|
||
# UPSERTS
|
||
# -------------------------------------------------------------------------
|
||
#
|
||
|
||
async def upsert_node(self, node_id: str, node_data: dict[str, str]) -> None:
|
||
"""
|
||
Insert or update a node document. If new, create an empty edges array.
|
||
"""
|
||
# By default, preserve existing 'edges'.
|
||
# We'll only set 'edges' to [] on insert (no overwrite).
|
||
update_doc = {"$set": {**node_data}, "$setOnInsert": {"edges": []}}
|
||
await self.collection.update_one({"_id": node_id}, update_doc, upsert=True)
|
||
|
||
async def upsert_edge(
|
||
self, source_node_id: str, target_node_id: str, edge_data: dict[str, str]
|
||
) -> None:
|
||
"""
|
||
Upsert an edge from source_node_id -> target_node_id with optional 'relation'.
|
||
If an edge with the same target exists, we remove it and re-insert with updated data.
|
||
"""
|
||
# Ensure source node exists
|
||
await self.upsert_node(source_node_id, {})
|
||
|
||
# Remove existing edge (if any)
|
||
await self.collection.update_one(
|
||
{"_id": source_node_id}, {"$pull": {"edges": {"target": target_node_id}}}
|
||
)
|
||
|
||
# Insert new edge
|
||
new_edge = {"target": target_node_id}
|
||
new_edge.update(edge_data)
|
||
await self.collection.update_one(
|
||
{"_id": source_node_id}, {"$push": {"edges": new_edge}}
|
||
)
|
||
|
||
#
|
||
# -------------------------------------------------------------------------
|
||
# DELETION
|
||
# -------------------------------------------------------------------------
|
||
#
|
||
|
||
async def delete_node(self, node_id: str) -> None:
|
||
"""
|
||
1) Remove node's doc entirely.
|
||
2) Remove inbound edges from any doc that references node_id.
|
||
"""
|
||
# Remove inbound edges from all other docs
|
||
await self.collection.update_many({}, {"$pull": {"edges": {"target": node_id}}})
|
||
|
||
# Remove the node doc
|
||
await self.collection.delete_one({"_id": node_id})
|
||
|
||
#
|
||
# -------------------------------------------------------------------------
|
||
# EMBEDDINGS (NOT IMPLEMENTED)
|
||
# -------------------------------------------------------------------------
|
||
#
|
||
|
||
async def embed_nodes(
|
||
self, algorithm: str
|
||
) -> tuple[np.ndarray[Any, Any], list[str]]:
|
||
"""
|
||
Placeholder for demonstration, raises NotImplementedError.
|
||
"""
|
||
raise NotImplementedError("Node embedding is not used in lightrag.")
|
||
|
||
#
|
||
# -------------------------------------------------------------------------
|
||
# QUERY
|
||
# -------------------------------------------------------------------------
|
||
#
|
||
|
||
async def get_all_labels(self) -> list[str]:
|
||
"""
|
||
Get all existing node _id in the database
|
||
Returns:
|
||
[id1, id2, ...] # Alphabetically sorted id list
|
||
"""
|
||
# Use MongoDB's distinct and aggregation to get all unique labels
|
||
pipeline = [
|
||
{"$group": {"_id": "$_id"}}, # Group by _id
|
||
{"$sort": {"_id": 1}}, # Sort alphabetically
|
||
]
|
||
|
||
cursor = self.collection.aggregate(pipeline)
|
||
labels = []
|
||
async for doc in cursor:
|
||
labels.append(doc["_id"])
|
||
return labels
|
||
|
||
async def get_knowledge_graph(
|
||
self, node_label: str, max_depth: int = 5
|
||
) -> KnowledgeGraph:
|
||
"""
|
||
Get complete connected subgraph for specified node (including the starting node itself)
|
||
|
||
Args:
|
||
node_label: Label of the nodes to start from
|
||
max_depth: Maximum depth of traversal (default: 5)
|
||
|
||
Returns:
|
||
KnowledgeGraph object containing nodes and edges of the subgraph
|
||
"""
|
||
label = node_label
|
||
result = KnowledgeGraph()
|
||
seen_nodes = set()
|
||
seen_edges = set()
|
||
|
||
try:
|
||
if label == "*":
|
||
# Get all nodes and edges
|
||
async for node_doc in self.collection.find({}):
|
||
node_id = str(node_doc["_id"])
|
||
if node_id not in seen_nodes:
|
||
result.nodes.append(
|
||
KnowledgeGraphNode(
|
||
id=node_id,
|
||
labels=[node_doc.get("_id")],
|
||
properties={
|
||
k: v
|
||
for k, v in node_doc.items()
|
||
if k not in ["_id", "edges"]
|
||
},
|
||
)
|
||
)
|
||
seen_nodes.add(node_id)
|
||
|
||
# Process edges
|
||
for edge in node_doc.get("edges", []):
|
||
edge_id = f"{node_id}-{edge['target']}"
|
||
if edge_id not in seen_edges:
|
||
result.edges.append(
|
||
KnowledgeGraphEdge(
|
||
id=edge_id,
|
||
type=edge.get("relation", ""),
|
||
source=node_id,
|
||
target=edge["target"],
|
||
properties={
|
||
k: v
|
||
for k, v in edge.items()
|
||
if k not in ["target", "relation"]
|
||
},
|
||
)
|
||
)
|
||
seen_edges.add(edge_id)
|
||
else:
|
||
# Verify if starting node exists
|
||
start_nodes = self.collection.find({"_id": label})
|
||
start_nodes_exist = await start_nodes.to_list(length=1)
|
||
if not start_nodes_exist:
|
||
logger.warning(f"Starting node with label {label} does not exist!")
|
||
return result
|
||
|
||
# Use $graphLookup for traversal
|
||
pipeline = [
|
||
{
|
||
"$match": {"_id": label}
|
||
}, # Start with nodes having the specified label
|
||
{
|
||
"$graphLookup": {
|
||
"from": self._collection_name,
|
||
"startWith": "$edges.target",
|
||
"connectFromField": "edges.target",
|
||
"connectToField": "_id",
|
||
"maxDepth": max_depth,
|
||
"depthField": "depth",
|
||
"as": "connected_nodes",
|
||
}
|
||
},
|
||
]
|
||
|
||
async for doc in self.collection.aggregate(pipeline):
|
||
# Add the start node
|
||
node_id = str(doc["_id"])
|
||
if node_id not in seen_nodes:
|
||
result.nodes.append(
|
||
KnowledgeGraphNode(
|
||
id=node_id,
|
||
labels=[
|
||
doc.get(
|
||
"_id",
|
||
)
|
||
],
|
||
properties={
|
||
k: v
|
||
for k, v in doc.items()
|
||
if k
|
||
not in [
|
||
"_id",
|
||
"edges",
|
||
"connected_nodes",
|
||
"depth",
|
||
]
|
||
},
|
||
)
|
||
)
|
||
seen_nodes.add(node_id)
|
||
|
||
# Add edges from start node
|
||
for edge in doc.get("edges", []):
|
||
edge_id = f"{node_id}-{edge['target']}"
|
||
if edge_id not in seen_edges:
|
||
result.edges.append(
|
||
KnowledgeGraphEdge(
|
||
id=edge_id,
|
||
type=edge.get("relation", ""),
|
||
source=node_id,
|
||
target=edge["target"],
|
||
properties={
|
||
k: v
|
||
for k, v in edge.items()
|
||
if k not in ["target", "relation"]
|
||
},
|
||
)
|
||
)
|
||
seen_edges.add(edge_id)
|
||
|
||
# Add connected nodes and their edges
|
||
for connected in doc.get("connected_nodes", []):
|
||
node_id = str(connected["_id"])
|
||
if node_id not in seen_nodes:
|
||
result.nodes.append(
|
||
KnowledgeGraphNode(
|
||
id=node_id,
|
||
labels=[connected.get("_id")],
|
||
properties={
|
||
k: v
|
||
for k, v in connected.items()
|
||
if k not in ["_id", "edges", "depth"]
|
||
},
|
||
)
|
||
)
|
||
seen_nodes.add(node_id)
|
||
|
||
# Add edges from connected nodes
|
||
for edge in connected.get("edges", []):
|
||
edge_id = f"{node_id}-{edge['target']}"
|
||
if edge_id not in seen_edges:
|
||
result.edges.append(
|
||
KnowledgeGraphEdge(
|
||
id=edge_id,
|
||
type=edge.get("relation", ""),
|
||
source=node_id,
|
||
target=edge["target"],
|
||
properties={
|
||
k: v
|
||
for k, v in edge.items()
|
||
if k not in ["target", "relation"]
|
||
},
|
||
)
|
||
)
|
||
seen_edges.add(edge_id)
|
||
|
||
logger.info(
|
||
f"Subgraph query successful | Node count: {len(result.nodes)} | Edge count: {len(result.edges)}"
|
||
)
|
||
|
||
except PyMongoError as e:
|
||
logger.error(f"MongoDB query failed: {str(e)}")
|
||
|
||
return result
|
||
|
||
async def index_done_callback(self) -> None:
|
||
# Mongo handles persistence automatically
|
||
pass
|
||
|
||
|
||
@final
|
||
@dataclass
|
||
class MongoVectorDBStorage(BaseVectorStorage):
|
||
def __post_init__(self):
|
||
kwargs = self.global_config.get("vector_db_storage_cls_kwargs", {})
|
||
cosine_threshold = kwargs.get("cosine_better_than_threshold")
|
||
if cosine_threshold is None:
|
||
raise ValueError(
|
||
"cosine_better_than_threshold must be specified in vector_db_storage_cls_kwargs"
|
||
)
|
||
self.cosine_better_than_threshold = cosine_threshold
|
||
|
||
uri = os.environ.get(
|
||
"MONGO_URI",
|
||
config.get(
|
||
"mongodb", "uri", fallback="mongodb://root:root@localhost:27017/"
|
||
),
|
||
)
|
||
client = AsyncIOMotorClient(uri)
|
||
database = client.get_database(
|
||
os.environ.get(
|
||
"MONGO_DATABASE",
|
||
config.get("mongodb", "database", fallback="LightRAG"),
|
||
)
|
||
)
|
||
|
||
self._collection_name = self.namespace
|
||
self._data = database.get_collection(self._collection_name)
|
||
self._max_batch_size = self.global_config["embedding_batch_num"]
|
||
|
||
logger.debug(f"Use MongoDB as VDB {self._collection_name}")
|
||
|
||
# Ensure collection exists
|
||
create_collection_if_not_exists(uri, database.name, self._collection_name)
|
||
|
||
# Ensure vector index exists
|
||
self.create_vector_index(uri, database.name, self._collection_name)
|
||
|
||
def create_vector_index(self, uri: str, database_name: str, collection_name: str):
|
||
"""Creates an Atlas Vector Search index."""
|
||
client = MongoClient(uri)
|
||
collection = client.get_database(database_name).get_collection(
|
||
self._collection_name
|
||
)
|
||
|
||
try:
|
||
search_index_model = SearchIndexModel(
|
||
definition={
|
||
"fields": [
|
||
{
|
||
"type": "vector",
|
||
"numDimensions": self.embedding_func.embedding_dim, # Ensure correct dimensions
|
||
"path": "vector",
|
||
"similarity": "cosine", # Options: euclidean, cosine, dotProduct
|
||
}
|
||
]
|
||
},
|
||
name="vector_knn_index",
|
||
type="vectorSearch",
|
||
)
|
||
|
||
collection.create_search_index(search_index_model)
|
||
logger.info("Vector index created successfully.")
|
||
|
||
except PyMongoError as _:
|
||
logger.debug("vector index already exist")
|
||
|
||
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
|
||
logger.debug(f"Inserting {len(data)} vectors to {self.namespace}")
|
||
if not data:
|
||
logger.warning("You are inserting an empty data set to vector DB")
|
||
return []
|
||
|
||
list_data = [
|
||
{
|
||
"_id": k,
|
||
**{k1: v1 for k1, v1 in v.items() if k1 in self.meta_fields},
|
||
}
|
||
for k, v in data.items()
|
||
]
|
||
contents = [v["content"] for v in data.values()]
|
||
batches = [
|
||
contents[i : i + self._max_batch_size]
|
||
for i in range(0, len(contents), self._max_batch_size)
|
||
]
|
||
|
||
async def wrapped_task(batch):
|
||
result = await self.embedding_func(batch)
|
||
pbar.update(1)
|
||
return result
|
||
|
||
embedding_tasks = [wrapped_task(batch) for batch in batches]
|
||
pbar = tqdm_async(
|
||
total=len(embedding_tasks), desc="Generating embeddings", unit="batch"
|
||
)
|
||
embeddings_list = await asyncio.gather(*embedding_tasks)
|
||
|
||
embeddings = np.concatenate(embeddings_list)
|
||
for i, d in enumerate(list_data):
|
||
d["vector"] = np.array(embeddings[i], dtype=np.float32).tolist()
|
||
|
||
update_tasks = []
|
||
for doc in list_data:
|
||
update_tasks.append(
|
||
self._data.update_one({"_id": doc["_id"]}, {"$set": doc}, upsert=True)
|
||
)
|
||
await asyncio.gather(*update_tasks)
|
||
|
||
return list_data
|
||
|
||
async def query(self, query: str, top_k: int) -> list[dict[str, Any]]:
|
||
"""Queries the vector database using Atlas Vector Search."""
|
||
# Generate the embedding
|
||
embedding = await self.embedding_func([query])
|
||
|
||
# Convert numpy array to a list to ensure compatibility with MongoDB
|
||
query_vector = embedding[0].tolist()
|
||
|
||
# Define the aggregation pipeline with the converted query vector
|
||
pipeline = [
|
||
{
|
||
"$vectorSearch": {
|
||
"index": "vector_knn_index", # Ensure this matches the created index name
|
||
"path": "vector",
|
||
"queryVector": query_vector,
|
||
"numCandidates": 100, # Adjust for performance
|
||
"limit": top_k,
|
||
}
|
||
},
|
||
{"$addFields": {"score": {"$meta": "vectorSearchScore"}}},
|
||
{"$match": {"score": {"$gte": self.cosine_better_than_threshold}}},
|
||
{"$project": {"vector": 0}},
|
||
]
|
||
|
||
# Execute the aggregation pipeline
|
||
cursor = self._data.aggregate(pipeline)
|
||
results = await cursor.to_list()
|
||
|
||
# Format and return the results
|
||
return [
|
||
{**doc, "id": doc["_id"], "distance": doc.get("score", None)}
|
||
for doc in results
|
||
]
|
||
|
||
async def index_done_callback(self) -> None:
|
||
# Mongo handles persistence automatically
|
||
pass
|
||
|
||
async def delete_entity(self, entity_name: str) -> None:
|
||
raise NotImplementedError
|
||
|
||
async def delete_entity_relation(self, entity_name: str) -> None:
|
||
raise NotImplementedError
|
||
|
||
|
||
def create_collection_if_not_exists(uri: str, database_name: str, collection_name: str):
|
||
"""Check if the collection exists. if not, create it."""
|
||
client = MongoClient(uri)
|
||
database = client.get_database(database_name)
|
||
|
||
collection_names = database.list_collection_names()
|
||
|
||
if collection_name not in collection_names:
|
||
database.create_collection(collection_name)
|
||
logger.info(f"Created collection: {collection_name}")
|
||
else:
|
||
logger.debug(f"Collection '{collection_name}' already exists.")
|