mirror of
				https://github.com/HKUDS/LightRAG.git
				synced 2025-11-04 03:39:35 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			71 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			71 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import os
 | 
						||
from lightrag import LightRAG, QueryParam
 | 
						||
from lightrag.llm.ollama import ollama_embed, openai_complete_if_cache
 | 
						||
from lightrag.utils import EmbeddingFunc
 | 
						||
 | 
						||
# WorkingDir
 | 
						||
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
 | 
						||
WORKING_DIR = os.path.join(ROOT_DIR, "myKG")
 | 
						||
if not os.path.exists(WORKING_DIR):
 | 
						||
    os.mkdir(WORKING_DIR)
 | 
						||
print(f"WorkingDir: {WORKING_DIR}")
 | 
						||
 | 
						||
# redis
 | 
						||
os.environ["REDIS_URI"] = "redis://localhost:6379"
 | 
						||
 | 
						||
# neo4j
 | 
						||
BATCH_SIZE_NODES = 500
 | 
						||
BATCH_SIZE_EDGES = 100
 | 
						||
os.environ["NEO4J_URI"] = "bolt://117.50.173.35:7687"
 | 
						||
os.environ["NEO4J_USERNAME"] = "neo4j"
 | 
						||
os.environ["NEO4J_PASSWORD"] = "12345678"
 | 
						||
 | 
						||
# milvus
 | 
						||
os.environ["MILVUS_URI"] = "http://117.50.173.35:19530"
 | 
						||
os.environ["MILVUS_USER"] = "root"
 | 
						||
os.environ["MILVUS_PASSWORD"] = "Milvus"
 | 
						||
os.environ["MILVUS_DB_NAME"] = "lightrag"
 | 
						||
 | 
						||
 | 
						||
async def llm_model_func(
 | 
						||
    prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
 | 
						||
) -> str:
 | 
						||
    return await openai_complete_if_cache(
 | 
						||
        "deepseek-chat",
 | 
						||
        prompt,
 | 
						||
        system_prompt=system_prompt,
 | 
						||
        history_messages=history_messages,
 | 
						||
        api_key="sk-91d0b59f25554251aa813ed756d79a6d",
 | 
						||
        base_url="https://api.deepseek.com",
 | 
						||
        **kwargs,
 | 
						||
    )
 | 
						||
 | 
						||
 | 
						||
embedding_func = EmbeddingFunc(
 | 
						||
    embedding_dim=768,
 | 
						||
    max_token_size=512,
 | 
						||
    func=lambda texts: ollama_embed(
 | 
						||
        texts, embed_model="shaw/dmeta-embedding-zh", host="http://117.50.173.35:11434"
 | 
						||
    ),
 | 
						||
)
 | 
						||
 | 
						||
rag = LightRAG(
 | 
						||
    working_dir=WORKING_DIR,
 | 
						||
    llm_model_func=llm_model_func,
 | 
						||
    llm_model_max_token_size=32768,
 | 
						||
    embedding_func=embedding_func,
 | 
						||
    chunk_token_size=512,
 | 
						||
    chunk_overlap_token_size=256,
 | 
						||
    kv_storage="RedisKVStorage",
 | 
						||
    graph_storage="Neo4JStorage",
 | 
						||
    vector_storage="MilvusVectorDBStorage",
 | 
						||
    doc_status_storage="RedisKVStorage",
 | 
						||
)
 | 
						||
 | 
						||
file = "../book.txt"
 | 
						||
with open(file, "r", encoding="utf-8") as f:
 | 
						||
    rag.insert(f.read())
 | 
						||
 | 
						||
 | 
						||
print(rag.query("谁会3D建模 ?", param=QueryParam(mode="mix")))
 |