LightRAG/lightrag/lightrag.py
Yannick Stephan 32e489865c cleanup code
2025-02-20 13:18:17 +01:00

1646 lines
64 KiB
Python

from __future__ import annotations
import asyncio
import os
import configparser
from dataclasses import asdict, dataclass, field
from datetime import datetime
from functools import partial
from typing import Any, AsyncIterator, Callable, Iterator, cast, final
from .base import (
BaseGraphStorage,
BaseKVStorage,
BaseVectorStorage,
DocProcessingStatus,
DocStatus,
DocStatusStorage,
QueryParam,
StorageNameSpace,
StoragesStatus,
)
from .namespace import NameSpace, make_namespace
from .operate import (
chunking_by_token_size,
extract_entities,
extract_keywords_only,
kg_query,
kg_query_with_keywords,
mix_kg_vector_query,
naive_query,
)
from .prompt import GRAPH_FIELD_SEP
from .utils import (
EmbeddingFunc,
always_get_an_event_loop,
compute_mdhash_id,
convert_response_to_json,
lazy_external_import,
limit_async_func_call,
logger,
set_logger,
encode_string_by_tiktoken,
)
config = configparser.ConfigParser()
config.read("config.ini", "utf-8")
# Storage type and implementation compatibility validation table
STORAGE_IMPLEMENTATIONS = {
"KV_STORAGE": {
"implementations": [
"JsonKVStorage",
"MongoKVStorage",
"RedisKVStorage",
"TiDBKVStorage",
"PGKVStorage",
"OracleKVStorage",
],
"required_methods": ["get_by_id", "upsert"],
},
"GRAPH_STORAGE": {
"implementations": [
"NetworkXStorage",
"Neo4JStorage",
"MongoGraphStorage",
"TiDBGraphStorage",
"AGEStorage",
"GremlinStorage",
"PGGraphStorage",
"OracleGraphStorage",
],
"required_methods": ["upsert_node", "upsert_edge"],
},
"VECTOR_STORAGE": {
"implementations": [
"NanoVectorDBStorage",
"MilvusVectorDBStorage",
"ChromaVectorDBStorage",
"TiDBVectorDBStorage",
"PGVectorStorage",
"FaissVectorDBStorage",
"QdrantVectorDBStorage",
"OracleVectorDBStorage",
"MongoVectorDBStorage",
],
"required_methods": ["query", "upsert"],
},
"DOC_STATUS_STORAGE": {
"implementations": [
"JsonDocStatusStorage",
"PGDocStatusStorage",
"PGDocStatusStorage",
"MongoDocStatusStorage",
],
"required_methods": ["get_docs_by_status"],
},
}
# Storage implementation environment variable without default value
STORAGE_ENV_REQUIREMENTS: dict[str, list[str]] = {
# KV Storage Implementations
"JsonKVStorage": [],
"MongoKVStorage": [],
"RedisKVStorage": ["REDIS_URI"],
"TiDBKVStorage": ["TIDB_USER", "TIDB_PASSWORD", "TIDB_DATABASE"],
"PGKVStorage": ["POSTGRES_USER", "POSTGRES_PASSWORD", "POSTGRES_DATABASE"],
"OracleKVStorage": [
"ORACLE_DSN",
"ORACLE_USER",
"ORACLE_PASSWORD",
"ORACLE_CONFIG_DIR",
],
# Graph Storage Implementations
"NetworkXStorage": [],
"Neo4JStorage": ["NEO4J_URI", "NEO4J_USERNAME", "NEO4J_PASSWORD"],
"MongoGraphStorage": [],
"TiDBGraphStorage": ["TIDB_USER", "TIDB_PASSWORD", "TIDB_DATABASE"],
"AGEStorage": [
"AGE_POSTGRES_DB",
"AGE_POSTGRES_USER",
"AGE_POSTGRES_PASSWORD",
],
"GremlinStorage": ["GREMLIN_HOST", "GREMLIN_PORT", "GREMLIN_GRAPH"],
"PGGraphStorage": [
"POSTGRES_USER",
"POSTGRES_PASSWORD",
"POSTGRES_DATABASE",
],
"OracleGraphStorage": [
"ORACLE_DSN",
"ORACLE_USER",
"ORACLE_PASSWORD",
"ORACLE_CONFIG_DIR",
],
# Vector Storage Implementations
"NanoVectorDBStorage": [],
"MilvusVectorDBStorage": [],
"ChromaVectorDBStorage": [],
"TiDBVectorDBStorage": ["TIDB_USER", "TIDB_PASSWORD", "TIDB_DATABASE"],
"PGVectorStorage": ["POSTGRES_USER", "POSTGRES_PASSWORD", "POSTGRES_DATABASE"],
"FaissVectorDBStorage": [],
"QdrantVectorDBStorage": ["QDRANT_URL"], # QDRANT_API_KEY has default value None
"OracleVectorDBStorage": [
"ORACLE_DSN",
"ORACLE_USER",
"ORACLE_PASSWORD",
"ORACLE_CONFIG_DIR",
],
"MongoVectorDBStorage": [],
# Document Status Storage Implementations
"JsonDocStatusStorage": [],
"PGDocStatusStorage": ["POSTGRES_USER", "POSTGRES_PASSWORD", "POSTGRES_DATABASE"],
"MongoDocStatusStorage": [],
}
# Storage implementation module mapping
STORAGES = {
"NetworkXStorage": ".kg.networkx_impl",
"JsonKVStorage": ".kg.json_kv_impl",
"NanoVectorDBStorage": ".kg.nano_vector_db_impl",
"JsonDocStatusStorage": ".kg.json_doc_status_impl",
"Neo4JStorage": ".kg.neo4j_impl",
"OracleKVStorage": ".kg.oracle_impl",
"OracleGraphStorage": ".kg.oracle_impl",
"OracleVectorDBStorage": ".kg.oracle_impl",
"MilvusVectorDBStorage": ".kg.milvus_impl",
"MongoKVStorage": ".kg.mongo_impl",
"MongoDocStatusStorage": ".kg.mongo_impl",
"MongoGraphStorage": ".kg.mongo_impl",
"MongoVectorDBStorage": ".kg.mongo_impl",
"RedisKVStorage": ".kg.redis_impl",
"ChromaVectorDBStorage": ".kg.chroma_impl",
"TiDBKVStorage": ".kg.tidb_impl",
"TiDBVectorDBStorage": ".kg.tidb_impl",
"TiDBGraphStorage": ".kg.tidb_impl",
"PGKVStorage": ".kg.postgres_impl",
"PGVectorStorage": ".kg.postgres_impl",
"AGEStorage": ".kg.age_impl",
"PGGraphStorage": ".kg.postgres_impl",
"GremlinStorage": ".kg.gremlin_impl",
"PGDocStatusStorage": ".kg.postgres_impl",
"FaissVectorDBStorage": ".kg.faiss_impl",
"QdrantVectorDBStorage": ".kg.qdrant_impl",
}
@final
@dataclass
class LightRAG:
"""LightRAG: Simple and Fast Retrieval-Augmented Generation."""
# Directory
# ---
working_dir: str = field(
default=f"./lightrag_cache_{datetime.now().strftime('%Y-%m-%d-%H:%M:%S')}"
)
"""Directory where cache and temporary files are stored."""
# Storage
# ---
kv_storage: str = field(default="JsonKVStorage")
"""Storage backend for key-value data."""
vector_storage: str = field(default="NanoVectorDBStorage")
"""Storage backend for vector embeddings."""
graph_storage: str = field(default="NetworkXStorage")
"""Storage backend for knowledge graphs."""
doc_status_storage: str = field(default="JsonDocStatusStorage")
"""Storage type for tracking document processing statuses."""
# Logging
# ---
log_level: int = field(default=logger.level)
"""Logging level for the system (e.g., 'DEBUG', 'INFO', 'WARNING')."""
log_dir: str = field(default=os.getcwd())
"""Directory where logs are stored. Defaults to the current working directory."""
# Entity extraction
# ---
entity_extract_max_gleaning: int = field(default=1)
"""Maximum number of entity extraction attempts for ambiguous content."""
entity_summary_to_max_tokens: int = field(
default=int(os.getenv("MAX_TOKEN_SUMMARY", 500))
)
# Text chunking
# ---
chunk_token_size: int = field(default=int(os.getenv("CHUNK_SIZE", 1200)))
"""Maximum number of tokens per text chunk when splitting documents."""
chunk_overlap_token_size: int = field(
default=int(os.getenv("CHUNK_OVERLAP_SIZE", 100))
)
"""Number of overlapping tokens between consecutive text chunks to preserve context."""
tiktoken_model_name: str = field(default="gpt-4o-mini")
"""Model name used for tokenization when chunking text."""
"""Maximum number of tokens used for summarizing extracted entities."""
chunking_func: Callable[
[
str,
str | None,
bool,
int,
int,
str,
],
list[dict[str, Any]],
] = field(default_factory=lambda: chunking_by_token_size)
"""
Custom chunking function for splitting text into chunks before processing.
The function should take the following parameters:
- `content`: The text to be split into chunks.
- `split_by_character`: The character to split the text on. If None, the text is split into chunks of `chunk_token_size` tokens.
- `split_by_character_only`: If True, the text is split only on the specified character.
- `chunk_token_size`: The maximum number of tokens per chunk.
- `chunk_overlap_token_size`: The number of overlapping tokens between consecutive chunks.
- `tiktoken_model_name`: The name of the tiktoken model to use for tokenization.
The function should return a list of dictionaries, where each dictionary contains the following keys:
- `tokens`: The number of tokens in the chunk.
- `content`: The text content of the chunk.
Defaults to `chunking_by_token_size` if not specified.
"""
# Node embedding
# ---
node_embedding_algorithm: str = field(default="node2vec")
"""Algorithm used for node embedding in knowledge graphs."""
node2vec_params: dict[str, int] = field(
default_factory=lambda: {
"dimensions": 1536,
"num_walks": 10,
"walk_length": 40,
"window_size": 2,
"iterations": 3,
"random_seed": 3,
}
)
"""Configuration for the node2vec embedding algorithm:
- dimensions: Number of dimensions for embeddings.
- num_walks: Number of random walks per node.
- walk_length: Number of steps per random walk.
- window_size: Context window size for training.
- iterations: Number of iterations for training.
- random_seed: Seed value for reproducibility.
"""
# Embedding
# ---
embedding_func: EmbeddingFunc | None = field(default=None)
"""Function for computing text embeddings. Must be set before use."""
embedding_batch_num: int = field(default=32)
"""Batch size for embedding computations."""
embedding_func_max_async: int = field(default=16)
"""Maximum number of concurrent embedding function calls."""
embedding_cache_config: dict[str, Any] = field(
default={
"enabled": False,
"similarity_threshold": 0.95,
"use_llm_check": False,
}
)
"""Configuration for embedding cache.
- enabled: If True, enables caching to avoid redundant computations.
- similarity_threshold: Minimum similarity score to use cached embeddings.
- use_llm_check: If True, validates cached embeddings using an LLM.
"""
# LLM Configuration
# ---
llm_model_func: Callable[..., object] | None = field(default=None)
"""Function for interacting with the large language model (LLM). Must be set before use."""
llm_model_name: str = field(default="gpt-4o-mini")
"""Name of the LLM model used for generating responses."""
llm_model_max_token_size: int = field(default=int(os.getenv("MAX_TOKENS", 32768)))
"""Maximum number of tokens allowed per LLM response."""
llm_model_max_async: int = field(default=int(os.getenv("MAX_ASYNC", 16)))
"""Maximum number of concurrent LLM calls."""
llm_model_kwargs: dict[str, Any] = field(default_factory=dict)
"""Additional keyword arguments passed to the LLM model function."""
# Storage
# ---
vector_db_storage_cls_kwargs: dict[str, Any] = field(default_factory=dict)
"""Additional parameters for vector database storage."""
namespace_prefix: str = field(default="")
"""Prefix for namespacing stored data across different environments."""
enable_llm_cache: bool = field(default=True)
"""Enables caching for LLM responses to avoid redundant computations."""
enable_llm_cache_for_entity_extract: bool = field(default=True)
"""If True, enables caching for entity extraction steps to reduce LLM costs."""
# Extensions
# ---
max_parallel_insert: int = field(default=int(os.getenv("MAX_PARALLEL_INSERT", 20)))
"""Maximum number of parallel insert operations."""
addon_params: dict[str, Any] = field(default_factory=dict)
# Storages Management
# ---
auto_manage_storages_states: bool = field(default=True)
"""If True, lightrag will automatically calls initialize_storages and finalize_storages at the appropriate times."""
# Storages Management
# ---
convert_response_to_json_func: Callable[[str], dict[str, Any]] = field(
default_factory=lambda: convert_response_to_json
)
"""
Custom function for converting LLM responses to JSON format.
The default function is :func:`.utils.convert_response_to_json`.
"""
def __post_init__(self):
os.makedirs(self.log_dir, exist_ok=True)
log_file = os.path.join(self.log_dir, "lightrag.log")
set_logger(log_file)
logger.setLevel(self.log_level)
logger.info(f"Logger initialized for working directory: {self.working_dir}")
if not os.path.exists(self.working_dir):
logger.info(f"Creating working directory {self.working_dir}")
os.makedirs(self.working_dir)
# Verify storage implementation compatibility and environment variables
storage_configs = [
("KV_STORAGE", self.kv_storage),
("VECTOR_STORAGE", self.vector_storage),
("GRAPH_STORAGE", self.graph_storage),
("DOC_STATUS_STORAGE", self.doc_status_storage),
]
for storage_type, storage_name in storage_configs:
# Verify storage implementation compatibility
self.verify_storage_implementation(storage_type, storage_name)
# Check environment variables
# self.check_storage_env_vars(storage_name)
# Ensure vector_db_storage_cls_kwargs has required fields
default_vector_db_kwargs = {
"cosine_better_than_threshold": float(os.getenv("COSINE_THRESHOLD", "0.2"))
}
self.vector_db_storage_cls_kwargs = {
**default_vector_db_kwargs,
**self.vector_db_storage_cls_kwargs,
}
# Life cycle
self.storages_status = StoragesStatus.NOT_CREATED
# Show config
global_config = asdict(self)
_print_config = ",\n ".join([f"{k} = {v}" for k, v in global_config.items()])
logger.debug(f"LightRAG init with param:\n {_print_config}\n")
# Init LLM
self.embedding_func = limit_async_func_call(self.embedding_func_max_async)( # type: ignore
self.embedding_func
)
# Initialize all storages
self.key_string_value_json_storage_cls: type[BaseKVStorage] = (
self._get_storage_class(self.kv_storage)
) # type: ignore
self.vector_db_storage_cls: type[BaseVectorStorage] = self._get_storage_class(
self.vector_storage
) # type: ignore
self.graph_storage_cls: type[BaseGraphStorage] = self._get_storage_class(
self.graph_storage
) # type: ignore
self.key_string_value_json_storage_cls = partial( # type: ignore
self.key_string_value_json_storage_cls, global_config=global_config
)
self.vector_db_storage_cls = partial( # type: ignore
self.vector_db_storage_cls, global_config=global_config
)
self.graph_storage_cls = partial( # type: ignore
self.graph_storage_cls, global_config=global_config
)
# Initialize document status storage
self.doc_status_storage_cls = self._get_storage_class(self.doc_status_storage)
self.llm_response_cache: BaseKVStorage = self.key_string_value_json_storage_cls( # type: ignore
namespace=make_namespace(
self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE
),
embedding_func=self.embedding_func,
)
self.full_docs: BaseKVStorage = self.key_string_value_json_storage_cls( # type: ignore
namespace=make_namespace(
self.namespace_prefix, NameSpace.KV_STORE_FULL_DOCS
),
embedding_func=self.embedding_func,
)
self.text_chunks: BaseKVStorage = self.key_string_value_json_storage_cls( # type: ignore
namespace=make_namespace(
self.namespace_prefix, NameSpace.KV_STORE_TEXT_CHUNKS
),
embedding_func=self.embedding_func,
)
self.chunk_entity_relation_graph: BaseGraphStorage = self.graph_storage_cls( # type: ignore
namespace=make_namespace(
self.namespace_prefix, NameSpace.GRAPH_STORE_CHUNK_ENTITY_RELATION
),
embedding_func=self.embedding_func,
)
self.entities_vdb: BaseVectorStorage = self.vector_db_storage_cls( # type: ignore
namespace=make_namespace(
self.namespace_prefix, NameSpace.VECTOR_STORE_ENTITIES
),
embedding_func=self.embedding_func,
meta_fields={"entity_name"},
)
self.relationships_vdb: BaseVectorStorage = self.vector_db_storage_cls( # type: ignore
namespace=make_namespace(
self.namespace_prefix, NameSpace.VECTOR_STORE_RELATIONSHIPS
),
embedding_func=self.embedding_func,
meta_fields={"src_id", "tgt_id"},
)
self.chunks_vdb: BaseVectorStorage = self.vector_db_storage_cls( # type: ignore
namespace=make_namespace(
self.namespace_prefix, NameSpace.VECTOR_STORE_CHUNKS
),
embedding_func=self.embedding_func,
)
# Initialize document status storage
self.doc_status: DocStatusStorage = self.doc_status_storage_cls(
namespace=make_namespace(self.namespace_prefix, NameSpace.DOC_STATUS),
global_config=global_config,
embedding_func=None,
)
if self.llm_response_cache and hasattr(
self.llm_response_cache, "global_config"
):
hashing_kv = self.llm_response_cache
else:
hashing_kv = self.key_string_value_json_storage_cls( # type: ignore
namespace=make_namespace(
self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE
),
embedding_func=self.embedding_func,
)
self.llm_model_func = limit_async_func_call(self.llm_model_max_async)(
partial(
self.llm_model_func, # type: ignore
hashing_kv=hashing_kv,
**self.llm_model_kwargs,
)
)
self.storages_status = StoragesStatus.CREATED
# Initialize storages
if self.auto_manage_storages_states:
loop = always_get_an_event_loop()
loop.run_until_complete(self.initialize_storages())
def __del__(self):
# Finalize storages
if self.auto_manage_storages_states:
loop = always_get_an_event_loop()
loop.run_until_complete(self.finalize_storages())
async def initialize_storages(self):
"""Asynchronously initialize the storages"""
if self.storages_status == StoragesStatus.CREATED:
tasks = []
for storage in (
self.full_docs,
self.text_chunks,
self.entities_vdb,
self.relationships_vdb,
self.chunks_vdb,
self.chunk_entity_relation_graph,
self.llm_response_cache,
self.doc_status,
):
if storage:
tasks.append(storage.initialize())
await asyncio.gather(*tasks)
self.storages_status = StoragesStatus.INITIALIZED
logger.debug("Initialized Storages")
async def finalize_storages(self):
"""Asynchronously finalize the storages"""
if self.storages_status == StoragesStatus.INITIALIZED:
tasks = []
for storage in (
self.full_docs,
self.text_chunks,
self.entities_vdb,
self.relationships_vdb,
self.chunks_vdb,
self.chunk_entity_relation_graph,
self.llm_response_cache,
self.doc_status,
):
if storage:
tasks.append(storage.finalize())
await asyncio.gather(*tasks)
self.storages_status = StoragesStatus.FINALIZED
logger.debug("Finalized Storages")
def _get_storage_class(self, storage_name: str) -> Callable[..., Any]:
import_path = STORAGES[storage_name]
storage_class = lazy_external_import(import_path, storage_name)
return storage_class
def insert(
self,
input: str | list[str],
split_by_character: str | None = None,
split_by_character_only: bool = False,
) -> None:
"""Sync Insert documents with checkpoint support
Args:
input: Single document string or list of document strings
split_by_character: if split_by_character is not None, split the string by character, if chunk longer than
split_by_character_only: if split_by_character_only is True, split the string by character only, when
split_by_character is None, this parameter is ignored.
"""
loop = always_get_an_event_loop()
loop.run_until_complete(
self.ainsert(input, split_by_character, split_by_character_only)
)
async def ainsert(
self,
input: str | list[str],
split_by_character: str | None = None,
split_by_character_only: bool = False,
) -> None:
"""Async Insert documents with checkpoint support
Args:
input: Single document string or list of document strings
split_by_character: if split_by_character is not None, split the string by character, if chunk longer than
split_by_character_only: if split_by_character_only is True, split the string by character only, when
split_by_character is None, this parameter is ignored.
"""
await self.apipeline_enqueue_documents(input)
await self.apipeline_process_enqueue_documents(
split_by_character, split_by_character_only
)
def insert_custom_chunks(self, full_text: str, text_chunks: list[str]) -> None:
loop = always_get_an_event_loop()
loop.run_until_complete(self.ainsert_custom_chunks(full_text, text_chunks))
async def ainsert_custom_chunks(
self, full_text: str, text_chunks: list[str]
) -> None:
update_storage = False
try:
doc_key = compute_mdhash_id(full_text.strip(), prefix="doc-")
new_docs = {doc_key: {"content": full_text.strip()}}
_add_doc_keys = await self.full_docs.filter_keys(set(doc_key))
new_docs = {k: v for k, v in new_docs.items() if k in _add_doc_keys}
if not len(new_docs):
logger.warning("This document is already in the storage.")
return
update_storage = True
logger.info(f"Inserting {len(new_docs)} docs")
inserting_chunks: dict[str, Any] = {}
for chunk_text in text_chunks:
chunk_text_stripped = chunk_text.strip()
chunk_key = compute_mdhash_id(chunk_text_stripped, prefix="chunk-")
inserting_chunks[chunk_key] = {
"content": chunk_text_stripped,
"full_doc_id": doc_key,
}
doc_ids = set(inserting_chunks.keys())
add_chunk_keys = await self.text_chunks.filter_keys(doc_ids)
inserting_chunks = {
k: v for k, v in inserting_chunks.items() if k in add_chunk_keys
}
if not len(inserting_chunks):
logger.warning("All chunks are already in the storage.")
return
tasks = [
self.chunks_vdb.upsert(inserting_chunks),
self._process_entity_relation_graph(inserting_chunks),
self.full_docs.upsert(new_docs),
self.text_chunks.upsert(inserting_chunks),
]
await asyncio.gather(*tasks)
finally:
if update_storage:
await self._insert_done()
async def apipeline_enqueue_documents(self, input: str | list[str]) -> None:
"""
Pipeline for Processing Documents
1. Remove duplicate contents from the list
2. Generate document IDs and initial status
3. Filter out already processed documents
4. Enqueue document in status
"""
if isinstance(input, str):
input = [input]
# 1. Remove duplicate contents from the list
unique_contents = list(set(doc.strip() for doc in input))
# 2. Generate document IDs and initial status
new_docs: dict[str, Any] = {
compute_mdhash_id(content, prefix="doc-"): {
"content": content,
"content_summary": self._get_content_summary(content),
"content_length": len(content),
"status": DocStatus.PENDING,
"created_at": datetime.now().isoformat(),
"updated_at": datetime.now().isoformat(),
}
for content in unique_contents
}
# 3. Filter out already processed documents
# Get docs ids
all_new_doc_ids = set(new_docs.keys())
# Exclude IDs of documents that are already in progress
unique_new_doc_ids = await self.doc_status.filter_keys(all_new_doc_ids)
# Filter new_docs to only include documents with unique IDs
new_docs = {doc_id: new_docs[doc_id] for doc_id in unique_new_doc_ids}
if not new_docs:
logger.info("No new unique documents were found.")
return
# 4. Store status document
await self.doc_status.upsert(new_docs)
logger.info(f"Stored {len(new_docs)} new unique documents")
async def apipeline_process_enqueue_documents(
self,
split_by_character: str | None = None,
split_by_character_only: bool = False,
) -> None:
"""
Process pending documents by splitting them into chunks, processing
each chunk for entity and relation extraction, and updating the
document status.
1. Get all pending, failed, and abnormally terminated processing documents.
2. Split document content into chunks
3. Process each chunk for entity and relation extraction
4. Update the document status
"""
# 1. Get all pending, failed, and abnormally terminated processing documents.
# Run the asynchronous status retrievals in parallel using asyncio.gather
processing_docs, failed_docs, pending_docs = await asyncio.gather(
self.doc_status.get_docs_by_status(DocStatus.PROCESSING),
self.doc_status.get_docs_by_status(DocStatus.FAILED),
self.doc_status.get_docs_by_status(DocStatus.PENDING),
)
to_process_docs: dict[str, DocProcessingStatus] = {}
to_process_docs.update(processing_docs)
to_process_docs.update(failed_docs)
to_process_docs.update(pending_docs)
if not to_process_docs:
logger.info("All documents have been processed or are duplicates")
return
# 2. split docs into chunks, insert chunks, update doc status
docs_batches = [
list(to_process_docs.items())[i : i + self.max_parallel_insert]
for i in range(0, len(to_process_docs), self.max_parallel_insert)
]
logger.info(f"Number of batches to process: {len(docs_batches)}.")
batches: list[Any] = []
# 3. iterate over batches
for batch_idx, docs_batch in enumerate(docs_batches):
async def batch(
batch_idx: int,
docs_batch: list[tuple[str, DocProcessingStatus]],
size_batch: int,
) -> None:
logger.info(f"Start processing batch {batch_idx + 1} of {size_batch}.")
# 4. iterate over batch
for doc_id_processing_status in docs_batch:
doc_id, status_doc = doc_id_processing_status
# Update status in processing
doc_status_id = compute_mdhash_id(status_doc.content, prefix="doc-")
# Generate chunks from document
chunks: dict[str, Any] = {
compute_mdhash_id(dp["content"], prefix="chunk-"): {
**dp,
"full_doc_id": doc_id,
}
for dp in self.chunking_func(
status_doc.content,
split_by_character,
split_by_character_only,
self.chunk_overlap_token_size,
self.chunk_token_size,
self.tiktoken_model_name,
)
}
# Process document (text chunks and full docs) in parallel
tasks = [
self.doc_status.upsert(
{
doc_status_id: {
"status": DocStatus.PROCESSING,
"updated_at": datetime.now().isoformat(),
"content": status_doc.content,
"content_summary": status_doc.content_summary,
"content_length": status_doc.content_length,
"created_at": status_doc.created_at,
}
}
),
self.chunks_vdb.upsert(chunks),
self._process_entity_relation_graph(chunks),
self.full_docs.upsert(
{doc_id: {"content": status_doc.content}}
),
self.text_chunks.upsert(chunks),
]
try:
await asyncio.gather(*tasks)
await self.doc_status.upsert(
{
doc_status_id: {
"status": DocStatus.PROCESSED,
"chunks_count": len(chunks),
"content": status_doc.content,
"content_summary": status_doc.content_summary,
"content_length": status_doc.content_length,
"created_at": status_doc.created_at,
"updated_at": datetime.now().isoformat(),
}
}
)
except Exception as e:
logger.error(f"Failed to process document {doc_id}: {str(e)}")
await self.doc_status.upsert(
{
doc_status_id: {
"status": DocStatus.FAILED,
"error": str(e),
"content": status_doc.content,
"content_summary": status_doc.content_summary,
"content_length": status_doc.content_length,
"created_at": status_doc.created_at,
"updated_at": datetime.now().isoformat(),
}
}
)
continue
logger.info(f"Completed batch {batch_idx + 1} of {len(docs_batches)}.")
batches.append(batch(batch_idx, docs_batch, len(docs_batches)))
await asyncio.gather(*batches)
await self._insert_done()
async def _process_entity_relation_graph(self, chunk: dict[str, Any]) -> None:
try:
new_kg = await extract_entities(
chunk,
knowledge_graph_inst=self.chunk_entity_relation_graph,
entity_vdb=self.entities_vdb,
relationships_vdb=self.relationships_vdb,
llm_response_cache=self.llm_response_cache,
global_config=asdict(self),
)
if new_kg is None:
logger.info("No new entities or relationships extracted.")
else:
async with self._entity_lock:
logger.info("New entities or relationships extracted.")
self.chunk_entity_relation_graph = new_kg
except Exception as e:
logger.error("Failed to extract entities and relationships")
raise e
async def _insert_done(self) -> None:
tasks = [
cast(StorageNameSpace, storage_inst).index_done_callback()
for storage_inst in [ # type: ignore
self.full_docs,
self.text_chunks,
self.llm_response_cache,
self.entities_vdb,
self.relationships_vdb,
self.chunks_vdb,
self.chunk_entity_relation_graph,
]
if storage_inst is not None
]
await asyncio.gather(*tasks)
logger.info("All Insert done")
def insert_custom_kg(self, custom_kg: dict[str, Any]) -> None:
loop = always_get_an_event_loop()
loop.run_until_complete(self.ainsert_custom_kg(custom_kg))
async def ainsert_custom_kg(self, custom_kg: dict[str, Any]) -> None:
update_storage = False
try:
# Insert chunks into vector storage
all_chunks_data: dict[str, dict[str, str]] = {}
chunk_to_source_map: dict[str, str] = {}
for chunk_data in custom_kg.get("chunks", {}):
chunk_content = chunk_data["content"].strip()
source_id = chunk_data["source_id"]
tokens = len(
encode_string_by_tiktoken(
chunk_content, model_name=self.tiktoken_model_name
)
)
chunk_order_index = (
0
if "chunk_order_index" not in chunk_data.keys()
else chunk_data["chunk_order_index"]
)
chunk_id = compute_mdhash_id(chunk_content, prefix="chunk-")
chunk_entry = {
"content": chunk_content,
"source_id": source_id,
"tokens": tokens,
"chunk_order_index": chunk_order_index,
"full_doc_id": source_id,
"status": DocStatus.PROCESSED,
}
all_chunks_data[chunk_id] = chunk_entry
chunk_to_source_map[source_id] = chunk_id
update_storage = True
if all_chunks_data:
await self.chunks_vdb.upsert(all_chunks_data)
if all_chunks_data:
await self.text_chunks.upsert(all_chunks_data)
# Insert entities into knowledge graph
all_entities_data: list[dict[str, str]] = []
for entity_data in custom_kg.get("entities", []):
entity_name = f'"{entity_data["entity_name"].upper()}"'
entity_type = entity_data.get("entity_type", "UNKNOWN")
description = entity_data.get("description", "No description provided")
# source_id = entity_data["source_id"]
source_chunk_id = entity_data.get("source_id", "UNKNOWN")
source_id = chunk_to_source_map.get(source_chunk_id, "UNKNOWN")
# Log if source_id is UNKNOWN
if source_id == "UNKNOWN":
logger.warning(
f"Entity '{entity_name}' has an UNKNOWN source_id. Please check the source mapping."
)
# Prepare node data
node_data: dict[str, str] = {
"entity_type": entity_type,
"description": description,
"source_id": source_id,
}
# Insert node data into the knowledge graph
await self.chunk_entity_relation_graph.upsert_node(
entity_name, node_data=node_data
)
node_data["entity_name"] = entity_name
all_entities_data.append(node_data)
update_storage = True
# Insert relationships into knowledge graph
all_relationships_data: list[dict[str, str]] = []
for relationship_data in custom_kg.get("relationships", []):
src_id = f'"{relationship_data["src_id"].upper()}"'
tgt_id = f'"{relationship_data["tgt_id"].upper()}"'
description = relationship_data["description"]
keywords = relationship_data["keywords"]
weight = relationship_data.get("weight", 1.0)
# source_id = relationship_data["source_id"]
source_chunk_id = relationship_data.get("source_id", "UNKNOWN")
source_id = chunk_to_source_map.get(source_chunk_id, "UNKNOWN")
# Log if source_id is UNKNOWN
if source_id == "UNKNOWN":
logger.warning(
f"Relationship from '{src_id}' to '{tgt_id}' has an UNKNOWN source_id. Please check the source mapping."
)
# Check if nodes exist in the knowledge graph
for need_insert_id in [src_id, tgt_id]:
if not (
await self.chunk_entity_relation_graph.has_node(need_insert_id)
):
await self.chunk_entity_relation_graph.upsert_node(
need_insert_id,
node_data={
"source_id": source_id,
"description": "UNKNOWN",
"entity_type": "UNKNOWN",
},
)
# Insert edge into the knowledge graph
await self.chunk_entity_relation_graph.upsert_edge(
src_id,
tgt_id,
edge_data={
"weight": weight,
"description": description,
"keywords": keywords,
"source_id": source_id,
},
)
edge_data: dict[str, str] = {
"src_id": src_id,
"tgt_id": tgt_id,
"description": description,
"keywords": keywords,
}
all_relationships_data.append(edge_data)
update_storage = True
# Insert entities into vector storage if needed
data_for_vdb = {
compute_mdhash_id(dp["entity_name"], prefix="ent-"): {
"content": dp["entity_name"] + dp["description"],
"entity_name": dp["entity_name"],
}
for dp in all_entities_data
}
await self.entities_vdb.upsert(data_for_vdb)
# Insert relationships into vector storage if needed
data_for_vdb = {
compute_mdhash_id(dp["src_id"] + dp["tgt_id"], prefix="rel-"): {
"src_id": dp["src_id"],
"tgt_id": dp["tgt_id"],
"content": dp["keywords"]
+ dp["src_id"]
+ dp["tgt_id"]
+ dp["description"],
}
for dp in all_relationships_data
}
await self.relationships_vdb.upsert(data_for_vdb)
finally:
if update_storage:
await self._insert_done()
def query(
self,
query: str,
param: QueryParam = QueryParam(),
system_prompt: str | None = None,
) -> str | Iterator[str]:
"""
Perform a sync query.
Args:
query (str): The query to be executed.
param (QueryParam): Configuration parameters for query execution.
prompt (Optional[str]): Custom prompts for fine-tuned control over the system's behavior. Defaults to None, which uses PROMPTS["rag_response"].
Returns:
str: The result of the query execution.
"""
loop = always_get_an_event_loop()
return loop.run_until_complete(self.aquery(query, param, system_prompt)) # type: ignore
async def aquery(
self,
query: str,
param: QueryParam = QueryParam(),
system_prompt: str | None = None,
) -> str | AsyncIterator[str]:
"""
Perform a async query.
Args:
query (str): The query to be executed.
param (QueryParam): Configuration parameters for query execution.
prompt (Optional[str]): Custom prompts for fine-tuned control over the system's behavior. Defaults to None, which uses PROMPTS["rag_response"].
Returns:
str: The result of the query execution.
"""
if param.mode in ["local", "global", "hybrid"]:
response = await kg_query(
query,
self.chunk_entity_relation_graph,
self.entities_vdb,
self.relationships_vdb,
self.text_chunks,
param,
asdict(self),
hashing_kv=self.llm_response_cache
if self.llm_response_cache
and hasattr(self.llm_response_cache, "global_config")
else self.key_string_value_json_storage_cls(
namespace=make_namespace(
self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE
),
global_config=asdict(self),
embedding_func=self.embedding_func,
),
system_prompt=system_prompt,
)
elif param.mode == "naive":
response = await naive_query(
query,
self.chunks_vdb,
self.text_chunks,
param,
asdict(self),
hashing_kv=self.llm_response_cache
if self.llm_response_cache
and hasattr(self.llm_response_cache, "global_config")
else self.key_string_value_json_storage_cls(
namespace=make_namespace(
self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE
),
global_config=asdict(self),
embedding_func=self.embedding_func,
),
system_prompt=system_prompt,
)
elif param.mode == "mix":
response = await mix_kg_vector_query(
query,
self.chunk_entity_relation_graph,
self.entities_vdb,
self.relationships_vdb,
self.chunks_vdb,
self.text_chunks,
param,
asdict(self),
hashing_kv=self.llm_response_cache
if self.llm_response_cache
and hasattr(self.llm_response_cache, "global_config")
else self.key_string_value_json_storage_cls(
namespace=make_namespace(
self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE
),
global_config=asdict(self),
embedding_func=self.embedding_func,
),
system_prompt=system_prompt,
)
else:
raise ValueError(f"Unknown mode {param.mode}")
await self._query_done()
return response
def query_with_separate_keyword_extraction(
self, query: str, prompt: str, param: QueryParam = QueryParam()
):
"""
1. Extract keywords from the 'query' using new function in operate.py.
2. Then run the standard aquery() flow with the final prompt (formatted_question).
"""
loop = always_get_an_event_loop()
return loop.run_until_complete(
self.aquery_with_separate_keyword_extraction(query, prompt, param)
)
async def aquery_with_separate_keyword_extraction(
self, query: str, prompt: str, param: QueryParam = QueryParam()
) -> str | AsyncIterator[str]:
"""
1. Calls extract_keywords_only to get HL/LL keywords from 'query'.
2. Then calls kg_query(...) or naive_query(...), etc. as the main query, while also injecting the newly extracted keywords if needed.
"""
# ---------------------
# STEP 1: Keyword Extraction
# ---------------------
hl_keywords, ll_keywords = await extract_keywords_only(
text=query,
param=param,
global_config=asdict(self),
hashing_kv=self.llm_response_cache
or self.key_string_value_json_storage_cls(
namespace=make_namespace(
self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE
),
global_config=asdict(self),
embedding_func=self.embedding_func,
),
)
param.hl_keywords = hl_keywords
param.ll_keywords = ll_keywords
# ---------------------
# STEP 2: Final Query Logic
# ---------------------
# Create a new string with the prompt and the keywords
ll_keywords_str = ", ".join(ll_keywords)
hl_keywords_str = ", ".join(hl_keywords)
formatted_question = f"{prompt}\n\n### Keywords:\nHigh-level: {hl_keywords_str}\nLow-level: {ll_keywords_str}\n\n### Query:\n{query}"
if param.mode in ["local", "global", "hybrid"]:
response = await kg_query_with_keywords(
formatted_question,
self.chunk_entity_relation_graph,
self.entities_vdb,
self.relationships_vdb,
self.text_chunks,
param,
asdict(self),
hashing_kv=self.llm_response_cache
if self.llm_response_cache
and hasattr(self.llm_response_cache, "global_config")
else self.key_string_value_json_storage_cls(
namespace=make_namespace(
self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE
),
global_config=asdict(self),
embedding_func=self.embedding_func,
),
)
elif param.mode == "naive":
response = await naive_query(
formatted_question,
self.chunks_vdb,
self.text_chunks,
param,
asdict(self),
hashing_kv=self.llm_response_cache
if self.llm_response_cache
and hasattr(self.llm_response_cache, "global_config")
else self.key_string_value_json_storage_cls(
namespace=make_namespace(
self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE
),
global_config=asdict(self),
embedding_func=self.embedding_func,
),
)
elif param.mode == "mix":
response = await mix_kg_vector_query(
formatted_question,
self.chunk_entity_relation_graph,
self.entities_vdb,
self.relationships_vdb,
self.chunks_vdb,
self.text_chunks,
param,
asdict(self),
hashing_kv=self.llm_response_cache
if self.llm_response_cache
and hasattr(self.llm_response_cache, "global_config")
else self.key_string_value_json_storage_cls(
namespace=make_namespace(
self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE
),
global_config=asdict(self),
embedding_func=self.embedding_func,
),
)
else:
raise ValueError(f"Unknown mode {param.mode}")
await self._query_done()
return response
async def _query_done(self):
await self.llm_response_cache.index_done_callback()
def delete_by_entity(self, entity_name: str) -> None:
loop = always_get_an_event_loop()
return loop.run_until_complete(self.adelete_by_entity(entity_name))
async def adelete_by_entity(self, entity_name: str) -> None:
entity_name = f'"{entity_name.upper()}"'
try:
await self.entities_vdb.delete_entity(entity_name)
await self.relationships_vdb.delete_entity_relation(entity_name)
await self.chunk_entity_relation_graph.delete_node(entity_name)
logger.info(
f"Entity '{entity_name}' and its relationships have been deleted."
)
await self._delete_by_entity_done()
except Exception as e:
logger.error(f"Error while deleting entity '{entity_name}': {e}")
async def _delete_by_entity_done(self) -> None:
await asyncio.gather(
*[
cast(StorageNameSpace, storage_inst).index_done_callback()
for storage_inst in [ # type: ignore
self.entities_vdb,
self.relationships_vdb,
self.chunk_entity_relation_graph,
]
]
)
def _get_content_summary(self, content: str, max_length: int = 100) -> str:
"""Get summary of document content
Args:
content: Original document content
max_length: Maximum length of summary
Returns:
Truncated content with ellipsis if needed
"""
content = content.strip()
if len(content) <= max_length:
return content
return content[:max_length] + "..."
async def get_processing_status(self) -> dict[str, int]:
"""Get current document processing status counts
Returns:
Dict with counts for each status
"""
return await self.doc_status.get_status_counts()
async def get_docs_by_status(
self, status: DocStatus
) -> dict[str, DocProcessingStatus]:
"""Get documents by status
Returns:
Dict with document id is keys and document status is values
"""
return await self.doc_status.get_docs_by_status(status)
async def adelete_by_doc_id(self, doc_id: str) -> None:
"""Delete a document and all its related data
Args:
doc_id: Document ID to delete
"""
try:
# 1. Get the document status and related data
doc_status = await self.doc_status.get_by_id(doc_id)
if not doc_status:
logger.warning(f"Document {doc_id} not found")
return
logger.debug(f"Starting deletion for document {doc_id}")
# 2. Get all related chunks
chunks = await self.text_chunks.get_by_id(doc_id)
if not chunks:
return
chunk_ids = list(chunks.keys())
logger.debug(f"Found {len(chunk_ids)} chunks to delete")
# 3. Before deleting, check the related entities and relationships for these chunks
for chunk_id in chunk_ids:
# Check entities
entities = [
dp
for dp in self.entities_vdb.client_storage["data"]
if dp.get("source_id") == chunk_id
]
logger.debug(f"Chunk {chunk_id} has {len(entities)} related entities")
# Check relationships
relations = [
dp
for dp in self.relationships_vdb.client_storage["data"]
if dp.get("source_id") == chunk_id
]
logger.debug(f"Chunk {chunk_id} has {len(relations)} related relations")
# Continue with the original deletion process...
# 4. Delete chunks from vector database
if chunk_ids:
await self.chunks_vdb.delete(chunk_ids)
await self.text_chunks.delete(chunk_ids)
# 5. Find and process entities and relationships that have these chunks as source
# Get all nodes in the graph
nodes = self.chunk_entity_relation_graph._graph.nodes(data=True)
edges = self.chunk_entity_relation_graph._graph.edges(data=True)
# Track which entities and relationships need to be deleted or updated
entities_to_delete = set()
entities_to_update = {} # entity_name -> new_source_id
relationships_to_delete = set()
relationships_to_update = {} # (src, tgt) -> new_source_id
# Process entities
for node, data in nodes:
if "source_id" in data:
# Split source_id using GRAPH_FIELD_SEP
sources = set(data["source_id"].split(GRAPH_FIELD_SEP))
sources.difference_update(chunk_ids)
if not sources:
entities_to_delete.add(node)
logger.debug(
f"Entity {node} marked for deletion - no remaining sources"
)
else:
new_source_id = GRAPH_FIELD_SEP.join(sources)
entities_to_update[node] = new_source_id
logger.debug(
f"Entity {node} will be updated with new source_id: {new_source_id}"
)
# Process relationships
for src, tgt, data in edges:
if "source_id" in data:
# Split source_id using GRAPH_FIELD_SEP
sources = set(data["source_id"].split(GRAPH_FIELD_SEP))
sources.difference_update(chunk_ids)
if not sources:
relationships_to_delete.add((src, tgt))
logger.debug(
f"Relationship {src}-{tgt} marked for deletion - no remaining sources"
)
else:
new_source_id = GRAPH_FIELD_SEP.join(sources)
relationships_to_update[(src, tgt)] = new_source_id
logger.debug(
f"Relationship {src}-{tgt} will be updated with new source_id: {new_source_id}"
)
# Delete entities
if entities_to_delete:
for entity in entities_to_delete:
await self.entities_vdb.delete_entity(entity)
logger.debug(f"Deleted entity {entity} from vector DB")
self.chunk_entity_relation_graph.remove_nodes(list(entities_to_delete))
logger.debug(f"Deleted {len(entities_to_delete)} entities from graph")
# Update entities
for entity, new_source_id in entities_to_update.items():
node_data = self.chunk_entity_relation_graph._graph.nodes[entity]
node_data["source_id"] = new_source_id
await self.chunk_entity_relation_graph.upsert_node(entity, node_data)
logger.debug(
f"Updated entity {entity} with new source_id: {new_source_id}"
)
# Delete relationships
if relationships_to_delete:
for src, tgt in relationships_to_delete:
rel_id_0 = compute_mdhash_id(src + tgt, prefix="rel-")
rel_id_1 = compute_mdhash_id(tgt + src, prefix="rel-")
await self.relationships_vdb.delete([rel_id_0, rel_id_1])
logger.debug(f"Deleted relationship {src}-{tgt} from vector DB")
self.chunk_entity_relation_graph.remove_edges(
list(relationships_to_delete)
)
logger.debug(
f"Deleted {len(relationships_to_delete)} relationships from graph"
)
# Update relationships
for (src, tgt), new_source_id in relationships_to_update.items():
edge_data = self.chunk_entity_relation_graph._graph.edges[src, tgt]
edge_data["source_id"] = new_source_id
await self.chunk_entity_relation_graph.upsert_edge(src, tgt, edge_data)
logger.debug(
f"Updated relationship {src}-{tgt} with new source_id: {new_source_id}"
)
# 6. Delete original document and status
await self.full_docs.delete([doc_id])
await self.doc_status.delete([doc_id])
# 7. Ensure all indexes are updated
await self._insert_done()
logger.info(
f"Successfully deleted document {doc_id} and related data. "
f"Deleted {len(entities_to_delete)} entities and {len(relationships_to_delete)} relationships. "
f"Updated {len(entities_to_update)} entities and {len(relationships_to_update)} relationships."
)
# Add verification step
async def verify_deletion():
# Verify if the document has been deleted
if await self.full_docs.get_by_id(doc_id):
logger.error(f"Document {doc_id} still exists in full_docs")
# Verify if chunks have been deleted
remaining_chunks = await self.text_chunks.get_by_id(doc_id)
if remaining_chunks:
logger.error(f"Found {len(remaining_chunks)} remaining chunks")
# Verify entities and relationships
for chunk_id in chunk_ids:
# Check entities
entities_with_chunk = [
dp
for dp in self.entities_vdb.client_storage["data"]
if chunk_id
in (dp.get("source_id") or "").split(GRAPH_FIELD_SEP)
]
if entities_with_chunk:
logger.error(
f"Found {len(entities_with_chunk)} entities still referencing chunk {chunk_id}"
)
# Check relationships
relations_with_chunk = [
dp
for dp in self.relationships_vdb.client_storage["data"]
if chunk_id
in (dp.get("source_id") or "").split(GRAPH_FIELD_SEP)
]
if relations_with_chunk:
logger.error(
f"Found {len(relations_with_chunk)} relations still referencing chunk {chunk_id}"
)
await verify_deletion()
except Exception as e:
logger.error(f"Error while deleting document {doc_id}: {e}")
async def get_entity_info(
self, entity_name: str, include_vector_data: bool = False
) -> dict[str, str | None | dict[str, str]]:
"""Get detailed information of an entity
Args:
entity_name: Entity name (no need for quotes)
include_vector_data: Whether to include data from the vector database
Returns:
dict: A dictionary containing entity information, including:
- entity_name: Entity name
- source_id: Source document ID
- graph_data: Complete node data from the graph database
- vector_data: (optional) Data from the vector database
"""
entity_name = f'"{entity_name.upper()}"'
# Get information from the graph
node_data = await self.chunk_entity_relation_graph.get_node(entity_name)
source_id = node_data.get("source_id") if node_data else None
result: dict[str, str | None | dict[str, str]] = {
"entity_name": entity_name,
"source_id": source_id,
"graph_data": node_data,
}
# Optional: Get vector database information
if include_vector_data:
entity_id = compute_mdhash_id(entity_name, prefix="ent-")
vector_data = self.entities_vdb._client.get([entity_id])
result["vector_data"] = vector_data[0] if vector_data else None
return result
async def get_relation_info(
self, src_entity: str, tgt_entity: str, include_vector_data: bool = False
) -> dict[str, str | None | dict[str, str]]:
"""Get detailed information of a relationship
Args:
src_entity: Source entity name (no need for quotes)
tgt_entity: Target entity name (no need for quotes)
include_vector_data: Whether to include data from the vector database
Returns:
dict: A dictionary containing relationship information, including:
- src_entity: Source entity name
- tgt_entity: Target entity name
- source_id: Source document ID
- graph_data: Complete edge data from the graph database
- vector_data: (optional) Data from the vector database
"""
src_entity = f'"{src_entity.upper()}"'
tgt_entity = f'"{tgt_entity.upper()}"'
# Get information from the graph
edge_data = await self.chunk_entity_relation_graph.get_edge(
src_entity, tgt_entity
)
source_id = edge_data.get("source_id") if edge_data else None
result: dict[str, str | None | dict[str, str]] = {
"src_entity": src_entity,
"tgt_entity": tgt_entity,
"source_id": source_id,
"graph_data": edge_data,
}
# Optional: Get vector database information
if include_vector_data:
rel_id = compute_mdhash_id(src_entity + tgt_entity, prefix="rel-")
vector_data = self.relationships_vdb._client.get([rel_id])
result["vector_data"] = vector_data[0] if vector_data else None
return result
def verify_storage_implementation(
self, storage_type: str, storage_name: str
) -> None:
"""Verify if storage implementation is compatible with specified storage type
Args:
storage_type: Storage type (KV_STORAGE, GRAPH_STORAGE etc.)
storage_name: Storage implementation name
Raises:
ValueError: If storage implementation is incompatible or missing required methods
"""
if storage_type not in STORAGE_IMPLEMENTATIONS:
raise ValueError(f"Unknown storage type: {storage_type}")
storage_info = STORAGE_IMPLEMENTATIONS[storage_type]
if storage_name not in storage_info["implementations"]:
raise ValueError(
f"Storage implementation '{storage_name}' is not compatible with {storage_type}. "
f"Compatible implementations are: {', '.join(storage_info['implementations'])}"
)
def check_storage_env_vars(self, storage_name: str) -> None:
"""Check if all required environment variables for storage implementation exist
Args:
storage_name: Storage implementation name
Raises:
ValueError: If required environment variables are missing
"""
required_vars = STORAGE_ENV_REQUIREMENTS.get(storage_name, [])
missing_vars = [var for var in required_vars if var not in os.environ]
if missing_vars:
raise ValueError(
f"Storage implementation '{storage_name}' requires the following "
f"environment variables: {', '.join(missing_vars)}"
)