mirror of
				https://github.com/HKUDS/LightRAG.git
				synced 2025-10-30 17:29:34 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			43 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			43 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import os
 | |
| from lightrag import LightRAG, QueryParam
 | |
| from lightrag.llm import gpt_4o_mini_complete
 | |
| #########
 | |
| # Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
 | |
| # import nest_asyncio
 | |
| # nest_asyncio.apply()
 | |
| #########
 | |
| 
 | |
| WORKING_DIR = "./dickens"
 | |
| 
 | |
| if not os.path.exists(WORKING_DIR):
 | |
|     os.mkdir(WORKING_DIR)
 | |
| 
 | |
| rag = LightRAG(
 | |
|     working_dir=WORKING_DIR,
 | |
|     llm_model_func=gpt_4o_mini_complete,  # Use gpt_4o_mini_complete LLM model
 | |
|     # llm_model_func=gpt_4o_complete  # Optionally, use a stronger model
 | |
| )
 | |
| 
 | |
| with open("./dickens/book.txt", "r", encoding="utf-8") as f:
 | |
|     rag.insert(f.read())
 | |
| 
 | |
| # Perform naive search
 | |
| print(
 | |
|     rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
 | |
| )
 | |
| 
 | |
| # Perform local search
 | |
| print(
 | |
|     rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
 | |
| )
 | |
| 
 | |
| # Perform global search
 | |
| print(
 | |
|     rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
 | |
| )
 | |
| 
 | |
| # Perform hybrid search
 | |
| print(
 | |
|     rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
 | |
| )
 | 
